2020版新高考数学一轮(鲁京津琼)精练:第8讲 曲线与方程 (含解析)
展开第8讲 曲线与方程
一、选择题
1.方程(2x+3y-1)(-1)=0表示的曲线是( )
A.两条直线 B.两条射线
C.两条线段 D.一条直线和一条射线
解析 原方程可化为或-1=0,即2x+3y-1=0(x≥3)或x=4,故原方程表示的曲线是一条直线和一条射线.
答案 D
2.(2017·衡水模拟)若方程x2+=1(a是常数),则下列结论正确的是( )
A.任意实数a方程表示椭圆 B.存在实数a方程表示椭圆
C.任意实数a方程表示双曲线 D.存在实数a方程表示抛物线
解析 当a>0且a≠1时,方程表示椭圆,故选B.
答案 B
3.(2017·长春模拟)设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )
A.-=1 B.+=1
C.-=1 D.+=1
解析 ∵M为AQ的垂直平分线上一点,则|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹是以定点C,A为焦点的椭圆.
∴a=,∴c=1,则b2=a2-c2=,
∴M的轨迹方程为+=1.
答案 D
4.设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则点P的轨迹方程是( )
A.y2=2x B.(x-1)2+y2=4
C.y2=-2x D.(x-1)2+y2=2
解析 如图,设P(x,y),圆心为M(1,0),连接MA,则MA⊥PA,且|MA|=1,
又∵|PA|=1,
∴|PM|==,
即|PM|2=2,∴(x-1)2+y2=2.
答案 D
5.平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足=λ1+λ2(O为原点),其中λ1,λ2∈R,且λ1+λ2=1,则点C的轨迹是( )
A.直线 B.椭圆
C.圆 D.双曲线
解析 设C(x,y),因为=λ1+λ2,
所以(x,y)=λ1(3,1)+λ2(-1,3),即
解得又λ1+λ2=1,
所以+=1,即x+2y=5 ,
所以点C的轨迹为直线,故选A.
答案 A
二、填空题
6.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积为__________.
解析 设P(x,y),由|PA|=2|PB|,
得=2,
∴3x2+3y2-12x=0,即x2+y2-4x=0.
∴P的轨迹为以(2,0)为圆心,半径为2的圆.
即轨迹所包围的面积等于4π.
答案 4π
7.已知点A(1,0),直线l:y=2x-4,点R是直线l上的一点,若=,则点P的轨迹方程为________.
解析 设P(x,y),R(x1,y1),由=知,点A是线段RP的中点,∴即
∵点R(x1,y1)在直线y=2x-4上,
∴y1=2x1-4,∴-y=2(2-x)-4,即y=2x.
答案 y=2x
8.在△ABC中,||=4,△ABC的内切圆切BC于D点,且||-||=2,则顶点A的轨迹方程为________.
解析 以BC的中点为原点,中垂线为y轴建立如图所示的坐标系,E,F分别为两个切点.
则|BE|=|BD|,|CD|=|CF|,
|AE|=|AF|.
∴|AB|-|AC|=2<|BC|=4,
∴点A的轨迹为以B,C的焦点的双曲线的右支(y≠0)且a=,c=2,∴b=,
∴轨迹方程为-=1(x>).
答案 -=1(x>)
三、解答题
9.如图所示,动圆C1:x2+y2=t2,1<t<3,与椭圆C2:+y2=1相交于A,B,C,D四点,点A1,A2分别为C2的左、右顶点.求直线AA1与直线A2B交点M的轨迹方程.
解 由椭圆C2:+y2=1,知A1(-3,0),A2(3,0),
由曲线的对称性及A(x0,y0),得B(x0,-y0),
设点M的坐标为(x,y),
直线AA1的方程为y=(x+3).①
直线A2B的方程为y=(x-3).②
由①②得y2=(x2-9).③
又点A(x0,y0)在椭圆C上,故y=1-.④
将④代入③得-y2=1(x<-3,y<0).
因此点M的轨迹方程为-y2=1(x<-3,y<0).
10.(2017·广州模拟)已知点C(1,0),点A,B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.
(1)求点P的轨迹T的方程;
(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.
解 (1)连接CP,OP,由·=0,知AC⊥BC,
∴|CP|=|AP|=|BP|=|AB|,
由垂径定理知|OP|2+|AP|2=|OA|2,
即|OP|2+|CP|2=9,
设点P(x,y),有(x2+y2)+[(x-1)2+y2]=9,
化简,得x2-x+y2=4.
(2)存在.根据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px(p>0)上,其中=1.
∴p=2,故抛物线方程为y2=4x,
由方程组得x2+3x-4=0,
解得x1=1,x2=-4,由x≥0,
故取x=1,此时y=±2.
故满足条件的点存在,其坐标为(1,-2)和(1,2).
11.已知△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是( )
A.-=1 B.-=1
C.-=1(x>3) D.-=1(x>4)
解析 如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,所以|CA|-|CB|=8-2=6<10=|AB|,根据双曲线定义,所求轨迹是以A,B为焦点,实轴长为6的双曲线的右支(y≠0),方程为-=1(x>3).
答案 C
12.已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足||·||+·=0,则动点P(x,y)的轨迹方程为( )
A.y2=8x B.y2=-8x
C.y2=4x D.y2=-4x
解析 =(4,0),=(x+2,y),=(x-2,y).
∴||=4,||=,·=4(x-2).根据已知条件得4=4(2-x).
整理得y2=-8x.∴点P的轨迹方程为y2=-8x.
答案 B
13.如图,P是椭圆+=1上的任意一点,F1,F2是它的两个焦点,O为坐标原点,且=+,则动点Q的轨迹方程是________.
解析 由于=+,
又+==2=-2,
设Q(x,y),则=-=,即P点坐标为,又P在椭圆上,则有+=1,即+=1.
答案 +=1
14.(2016·全国Ⅲ卷)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.
解 由题设F,设l1:y=a,l2:y=b,则ab≠0,
且A,B,P,Q,R.
记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.
(1)证明 由于F在线段AB上,故1+ab=0.
记AR的斜率为k1,FQ的斜率为k2,
则k1====-=-b=k2.
所以 AR∥FQ.
(2)设过AB的直线为l,设l与x轴的交点为D(x1,0),
则S△ABF=|b-a||FD|=|b-a|,
S△PQF=.由题设可得|b-a|=,所以x1=1,x1=0(舍去).
设满足条件的AB的中点为E(x,y).
当AB与x轴不垂直时,由kAB=kDE可得=(x≠1).而=y,
所以y2=x-1(x≠1).
当AB与x轴垂直时,E与D重合.
所以,所求轨迹方程为y2=x-1.