所属成套资源:2021年高考数学一轮精选练习全套(含解析)
2021年高考数学一轮精选练习:52《抛物线》(含解析)
展开
2021年高考数学一轮精选练习:52《抛物线》一 、选择题1.已知抛物线y2=4x的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,PA⊥l,垂足为A,|PF|=4,则直线AF的倾斜角等于( )A. B. C. D. 2.已知抛物线y2=2px(p>0),点C(-4,0),过抛物线的焦点作垂直于x轴的直线,与抛物线交于A,B两点,若△CAB的面积为24,则以直线AB为准线的抛物线的标准方程是( )A.y2=4x B.y2=-4x C.y2=8x D.y2=-8x 3.已知抛物线C:x2=2py(p>0),若直线y=2x被抛物线所截弦长为4,则抛物线C方程为( )A.x2=8y B.x2=4y C.x2=2y D.x2=y 4.已知抛物线C:y2=2px(p>0)的焦点为F,点M在抛物线C上,且|MO|=|MF|=(O为坐标原点),则·=( )A.- B. C. D.- 5.如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是( )A. B. C. D. 6.已知抛物线C:y2=2x,过焦点F且斜率为的直线与C交于P,Q两点,且P,Q两点在准线上的射影分别为M,N两点,则S△MFN=( )A.8 B.2 C.4 D.8 7.已知抛物线E:y2=2px(p>0)的焦点为F,过F且斜率为1的直线交E于A,B两点,线段AB的中点为M,其垂直平分线交x轴于点C,MN⊥y轴于点N.若四边形CMNF的面积等于7,则抛物线E的方程为( )A.y2=x B.y2=2x C.y2=4x D.y2=8x 8.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°,过AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为( )A. B.1 C. D.2 二 、填空题9.如图是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.当水面宽为2 m时,水位下降了 m. 10.如图,正方形ABCD和正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则= . 11.已知抛物线C1:y=ax2(a>0)的焦点F也是椭圆C2:+=1(b>0)的一个焦点,点M,P(1.5,1)分别为曲线C1,C2上的点,则|MP|+|MF|的最小值为 . 12.在平面直角坐标系xOy中,抛物线y2=6x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率k=-,则线段PF的长为 . 13.设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是 . 三 、解答题14.已知抛物线y2=2px(p>0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:(1)y1y2=-p2,x1x2=;(2)+为定值;(3)以AB为直径的圆与抛物线的准线相切. 15.已知直线y=k(x-2)与抛物线Γ:y2=x相交于A,B两点,M是线段AB的中点,过M作y轴的垂线交Γ于点N.(1)证明:抛物线Γ在点N处的切线与直线AB平行;(2)是否存在实数k使·=0?若存在,求k的值;若不存在,请说明理由. 16.已知抛物线C:x2=2py(p>0)和定点M(0,1),设过点M的动直线交抛物线C于A,B两点,抛物线C在A,B处的切线交点为N.(1)若N在以AB为直径的圆上,求p的值;(2)若△ABN面积的最小值为4,求抛物线C的方程.
答案解析1.答案为:B;解析:由抛物线y2=4x知焦点F的坐标为(1,0),准线l的方程为x=-1,由抛物线定义可知|PA|=|PF|=4,所以点P的坐标为(3,2),因此点A的坐标为(-1,2),所以kAF==-,所以直线AF的倾斜角等于,故选B. 2.答案为:D;解析:因为AB⊥x轴,且AB过点F,所以AB是焦点弦,且|AB|=2p,所以S△CAB=×2p×=24,解得p=4或-12(舍),所以抛物线方程为y2=8x,所以直线AB的方程为x=2,所以以直线AB为准线的抛物线的标准方程为y2=-8x,故选D. 3.答案为:C;解析:由得或即两交点坐标为(0,0)和(4p,8p),则=4,得p=1(舍去负值),故抛物线C的方程为x2=2y. 4.答案为:A;解析:不妨设M(m,)(m>0),易知抛物线C的焦点F的坐标为,因为|MO|=|MF|=,所以解得m=,p=2,所以=,=,所以·=-2=-.故选A. 5.答案为:A;解析:过A,B点分别作y轴的垂线,垂足分别为M,N,则|AM|=|AF|-1,|BN|=|BF|-1.可知====,故选A. 6.答案为:B;解析:不妨设点P在x轴上方,如图,由抛物线定义可知|PF|=|PM|,|QF|=|QN|,设直线PQ的倾斜角为θ,则tanθ=,所以θ=,由抛物线焦点弦的性质可知,|PF|===2,|QF|===,所以|MN|=|PQ|·sinθ=(|PF|+|QF|)·sin=×=4,所以S△MFN=×|MN|×p=×4×=2,故选B. 7.答案为:C;解析:由题意,得F,直线AB的方程为y=x-,设A(x1,y1),B(x2,y2),M(x0,y0),联立y=x-和y2=2px得,y2-2py-p2=0,则y1+y2=2p,所以y0==p,故N(0,p),又因为点M在直线AB上,所以x0=,即M,因为MC⊥AB,所以kAB·kMC=-1,故kMC=-1,从而直线MC的方程为y=-x+p,令y=0,得x=p,故C,四边形CMNF的面积可以看作直角梯形CMNO与直角三角形NOF的面积之差,即S四边形CMNF=S梯形CMNO-S△NOF=·p-p·=p2=7,∴p2=4,又p>0,∴p=2,故抛物线E的方程为y2=4x,故选C. 8.答案为:A;解析:过A,B分别作抛物线准线的垂线,垂足分别为A1,B1,如图,由题意知|MN|=(|AA1|+|BB1|)=(|AF|+|BF|),在△AFB中,|AB|2=|AF|2+|BF|2-2|AF||BF|·cos120°=|AF|2+|BF|2+|AF||BF|,∴2=·==≤×=,当且仅当|AF|=|BF|时取等号,∴的最大值为. 一 、填空题9.答案为:1;解析:以抛物线的顶点为坐标原点,水平方向为x轴建立平面直角坐标系,设抛物线的标准方程为x2=-2py(p>0),把(2,-2)代入方程得p=1,即抛物线的标准方程为x2=-2y.将x=代入x2=-2y得:y=-3,又-3-(-2)=-1,所以水面下降了1 m. 10.答案为:1+;解析:|OD|=,|DE|=b,|DC|=a,|EF|=b,故C,F,又抛物线y2=2px(p>0)经过C、F两点,从而有即∴b2=a2+2ab,∴2-2·-1=0,又>1,∴=1+. 11.答案为:2;解析:将P代入到+=1中,可得+=1,∴b=,∴c=1,∴抛物线的焦点F为(0,1),∴抛物线C1的方程为x2=4y,准线为直线y=-1,设点M在准线上的射影为D,根据抛物线的定义可知|MF|=|MD|,∴要求|MP|+|MF|的最小值,即求|MP|+|MD|的最小值,易知当D,M,P三点共线时,|MP|+|MD|最小,最小值为1-(-1)=2. 12.答案为:6;解析:由抛物线方程为y2=6x,所以焦点坐标F,准线方程为x=-,因为直线AF的斜率为-,所以直线AF的方程为y=-,画图象如图.当x=-时,y=3,所以A,因为PA⊥l,A为垂足,所以点P的纵坐标为3,可得点P的坐标为,根据抛物线的定义可知|PF|=|PA|=-=6. 13.答案为:(2,4);解析:如图,设A(x1,y1),B(x2,y2),M(x0,y0),则两式相减得,(y1+y2)(y1-y2)=4(x1-x2).当l的斜率k不存在时,符合条件的直线l必有两条.当k存在时,x1≠x2,则有·=2,又y1+y2=2y0,所以y0k=2.由CM⊥AB,得k·=-1,即y0k=5-x0,因此2=5-x0,x0=3,即M必在直线x=3上.将x=3代入y2=4x,得y2=12,则有-2<y0<2.因为点M在圆上,所以(x0-5)2+y=r2,故r2=y+4<12+4=16.又y+4>4(为保证有4条,在k存在时,y0≠0),所以4<r2<16,即2<r<4. 二 、解答题14.证明:(1)由已知得抛物线焦点坐标为.由题意可设直线方程为x=my+,代入y2=2px,得y2=2p,即y2-2pmy-p2=0.(*)因为在抛物线内部,所以直线与抛物线必有两交点.则y1,y2是方程(*)的两个实数根,所以y1y2=-p2.因为y=2px1,y=2px2,所以yy=4p2x1x2,所以x1x2===.(2)+=+=.因为x1x2=,x1+x2=|AB|-p,代入上式,得+==(定值).(3)设AB的中点为M(x0,y0),如图所示,分别过A,B作准线l的垂线,垂足为C,D,过M作准线l的垂线,垂足为N,则|MN|=(|AC|+|BD|)=(|AF|+|BF|)=|AB|.所以以AB为直径的圆与抛物线的准线相切. 15.解:(1)证明:由消去y并整理,得2k2x2-(8k2+1)x+8k2=0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=4,∴xM==,yM=k(xM-2)=k=.由题设条件可知,yN=yM=,xN=2y=,∴N.设抛物线Γ在点N处的切线l的方程为y-=m,将x=2y2代入上式,得2my2-y+-=0.∵直线l与抛物线Γ相切,∴Δ=1-4×2m×==0,∴m=k,即l∥AB.(2)假设存在实数k,使·=0,则NA⊥NB.∵M是AB的中点,∴|MN|=|AB|.由(1),得|AB|=|x1-x2|=·=·=·.∵MN⊥y轴,∴|MN|=|xM-xN|=-=.∴=·,解得k=±.故存在k=±,使得·=0. 16.解:(1)可设AB:y=kx+1,A(x1,y1),B(x2,y2),将AB的方程代入抛物线C,得x2-2pkx-2p=0,显然方程有两个不等实根,则x1+x2=2pk,x1x2=-2p.①又x2=2py,得y′=,则A,B处的切线斜率乘积为=-=-1,则有p=2.(2)设切线AN为y=x+b,又切点A在抛物线y=上,∴y1=,∴b=-=-,∴yAN=x-.同理yBN=x-.又∵N在yAN和yBN上,∴解得N.∴N(pk,-1).|AB|=|x2-x1|=·,点N到直线AB的距离d==,S△ABN=·|AB|·d=≥2,∴2=4,∴p=2.故抛物线C的方程为x2=4y.