![2021高考数学(理)人教A版一轮复习学案作业:第六章6.3等比数列及其前n项和第1页](http://m.enxinlong.com/img-preview/3/3/5750323/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021高考数学(理)人教A版一轮复习学案作业:第六章6.3等比数列及其前n项和第2页](http://m.enxinlong.com/img-preview/3/3/5750323/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021高考数学(理)人教A版一轮复习学案作业:第六章6.3等比数列及其前n项和第3页](http://m.enxinlong.com/img-preview/3/3/5750323/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2021高考数学理科人教A版一轮复习学案作业
2021高考数学(理)人教A版一轮复习学案作业:第六章6.3等比数列及其前n项和
展开
§6.3 等比数列及其前n项和
最新考纲
考情考向分析
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.
4.了解等比数列与指数函数的关系.
主要考查等比数列的基本运算、基本性质,等比数列的证明也是考查的热点.本节内容在高考中既可以以选择题、填空题的形式进行考查,也可以以解答题的形式进行考查.解答题往往与数列的计算、证明、等差数列、数列求和、不等式等问题综合考查.属于中低档题.
1.等比数列的有关概念
(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为=q(n∈N*,q为非零常数).
(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即G是a与b的等比中项⇒a,G,b成等比数列⇒G2=ab.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1.
(2)前n项和公式:
Sn=.
3.等比数列的常用性质
(1)通项公式的推广:an=am·qn-m(n,m∈N*).
(2)若m+n=p+q=2k(m,n,p,q,k∈N*),则am·an=ap·aq=a.
(3)若数列{an},{bn}(项数相同)是等比数列,则{λan},,{a},{an·bn},(λ≠0)仍然是等比数列.
(4)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,…为等比数列,公比为qk.
4.在等比数列{an}中,若Sn为其前n项和,则Sn,S2n-Sn,S3n-S2n也成等比数列(n为偶数且q=-1除外).
概念方法微思考
1.将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这两个等比数列的公比有何关系?
提示 仍然是一个等比数列,这两个数列的公比互为倒数.
2.任意两个实数都有等比中项吗?
提示 不是.只有同号的两个非零实数才有等比中项.
3.“b2=ac”是“a,b,c”成等比数列的什么条件?
提示 必要不充分条件.因为b2=ac时不一定有a,b,c成等比数列,比如a=0,b=0,c=1.但a,b,c成等比数列一定有b2=ac.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列.( × )
(2)如果数列{an}为等比数列,则数列{ln an}是等差数列.( × )
(3)数列{an}的通项公式是an=an,则其前n项和为Sn=.( × )
(4)数列{an}为等比数列,则S4,S8-S4,S12-S8成等比数列.( × )
题组二 教材改编
2.已知{an}是等比数列,a2=2,a5=,则公比q=______.
答案
解析 由题意知q3==,∴q=.
3.公比不为1的等比数列{an}满足a5a6+a4a7=18,若a1am=9,则m的值为( )
A.8 B.9 C.10 D.11
答案 C
解析 由题意得,2a5a6=18,a5a6=9,∴a1am=a5a6=9,∴m=10.
题组三 易错自纠
4.若1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值为________.
答案 -
解析 ∵1,a1,a2,4成等差数列,
∴3(a2-a1)=4-1,∴a2-a1=1.
又∵1,b1,b2,b3,4成等比数列,设其公比为q,
则b=1×4=4,且b2=1×q2>0,∴b2=2,
∴==-.
5.设Sn为等比数列{an}的前n项和,8a2+a5=0,则=________.
答案 -11
解析 设等比数列{an}的公比为q,
∵8a2+a5=0,∴8a1q+a1q4=0.
∴q3+8=0,∴q=-2,
∴=·
===-11.
6.一种专门占据内存的计算机病毒开机时占据内存1 MB,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB.(1 GB=210 MB)
答案 39
解析 由题意可知,病毒每复制一次所占内存的大小构成一等比数列{an},且a1=2,q=2,∴an=2n,
则2n=8×210=213,∴n=13.
即病毒共复制了13次.
∴所需时间为13×3=39(秒).
等比数列基本量的运算
1.(2020·晋城模拟)设正项等比数列{an}的前n项和为Sn,若S2=3,S4=15,则公比q等于( )
A.5 B.4 C.3 D.2
答案 D
解析 因为S2=3,S4=15,S4-S2=12,
所以
两个方程左右两边分别相除,得q2=4,
因为数列是正项等比数列,
所以q=2,故选D.
2.(2019·全国Ⅲ)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3等于( )
A.16 B.8 C.4 D.2
答案 C
解析 设等比数列{an}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2=4,因为数列{an}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2=4.
3.(2019·全国Ⅰ)记Sn为等比数列{an}的前n项和.若a1=,a=a6,则S5=________.
答案
解析 设等比数列{an}的公比为q,因为a=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=,所以q=3,所以S5===.
4.(2018·全国Ⅲ)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式;
(2)记Sn为{an}的前n项和,若Sm=63,求m.
解 (1)设{an}的公比为q,由题设得an=qn-1.
由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.
故an=(-2)n-1或an=2n-1(n∈N*).
(2)若an=(-2)n-1,则Sn=.
由Sm=63得(-2)m=-188,此方程没有正整数解.
若an=2n-1,则Sn=2n-1.
由Sm=63得2m=64,解得m=6.
综上,m=6.
思维升华 (1)等比数列的通项公式与前n项和公式共涉及五个量a1,an,q,n,Sn,已知其中三个就能求另外两个(简称“知三求二”).
(2)运用等比数列的前n项和公式时,注意对q=1和q≠1的分类讨论.
等比数列的判定与证明
例1 (2019·衡阳模拟)已知数列{an},{bn}满足a1=1,b1=,2an+1=an+bn,2bn+1=an+bn.
(1)证明:数列{an+bn},{an-bn}为等比数列;
(2)记Sn为数列{an}的前n项和,证明:Sn
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)