所属成套资源:2021高考数学人教A版一轮复习学案
2021高考数学一轮复习学案:第七章7.4空间几何体及其表面积、体积
展开§7.4 空间几何体及其表面积、体积1.多面体的结构特征名称棱柱棱锥棱台图形含义由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个仍然是棱锥,另一个我们称之为棱台侧棱平行且相等相交于一点但不一定相等延长线交于一点侧面形状平行四边形三角形梯形 2.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面相交于一点延长线交于一点 轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环 3.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)l 4.柱、锥、台、球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=(S上+S下+)h球S=4πR2V=πR3 概念方法微思考1.如何求旋转体的表面积?提示 求旋转体的侧面积时需要将曲面展开为平面图形计算,而表面积是侧面积与底面积之和.2.如何求不规则几何体的体积?提示 求不规则几何体的体积要注意分割与补形,将不规则的几何体通过分割或补形转化为规则的几何体求解.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ )(4)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × )题组二 教材改编2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cm C.3 cm D. cm答案 B解析 S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2.3.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案 ③⑤题组三 易错自纠4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12π B.π C.8π D.4π答案 A解析 由题意可知正方体的棱长为2,其体对角线为2即为球的直径,所以球的表面积为4πR2=(2R)2π=12π,故选A.5.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案 1∶47解析 设长方体的相邻三条棱长分别为a,b,c,它截出棱锥的体积V1=××a×b×c=abc,剩下的几何体的体积V2=abc-abc=abc,所以V1∶V2=1∶47. 6.Rt△ABC的三个顶点都在球O的球面上,AB=AC=2,若球心O到平面ABC的距离为1,则球O的半径为________,球O的表面积为________.答案 12π解析 Rt△ABC中,斜边BC=2,∴△ABC所在截面圆半径r=,又O到平面ABC的距离为1,可得球O的半径R==,故球O的表面积为12π. 空间几何体的结构特征1.(多选)以下命题,不正确的有( )A.以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥B.以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.一个平面截圆锥,得到一个圆锥和一个圆台答案 ABD解析 由圆锥、圆台、圆柱的定义可知A,B错误,C正确.对于命题D,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,D不正确.2.给出下列四个命题:①有两个侧面是矩形的立体图形是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.其中不正确的命题为________.(填序号)答案 ①②③解析 对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰不是侧棱时不一定成立(如图),故②错;对于③,若底面不是矩形,则③错;对于④,可知侧棱垂直于底面,故④正确.综上,命题①②③不正确. 思维升华 空间几何体概念辨析题的常用方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析. 空间几何体的表面积与体积命题点1 空间几何体的表面积例1 (2018·全国Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.12π B.12πC.8π D.10π答案 B解析 设圆柱的轴截面的边长为x,则由x2=8,得x=2,∴S圆柱表=2S底+S侧=2×π×()2+2π××2=12π.故选B.命题点2 求简单几何体的体积例2 (1)如图,正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为,D为BC的中点,则三棱锥A-B1DC1的体积为( )A.3 B. C.1 D.答案 C解析 如题图,因为△ABC是正三角形,且D为BC中点,则AD⊥BC.又因为BB1⊥平面ABC,AD⊂平面ABC,故BB1⊥AD,且BB1∩BC=B,BB1,BC⊂平面BCC1B1,所以AD⊥平面BCC1B1,所以AD是三棱锥A-B1DC1的高.所以=·AD=××=1.(2)母线长为1的圆锥,其侧面展开图的面积为,则该圆锥的体积为________.答案 π解析 设圆锥底面圆的半径为r,高为h,圆锥的侧面积S=πrl=,解得r=,从圆锥的轴截面图中可得h=,所以圆锥的体积 V=πr2h=π××=π.思维升华 空间几何体表面积、体积的求法(1)旋转体的表面积问题注意其侧面展开图的应用.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)体积可用公式法、转换法、分割法、补形法等求解.跟踪训练1 如图,直三棱柱ABC-A1B1C1的各条棱长均为2,D为棱B1C1上任意一点,则三棱锥D-A1BC的体积是______.答案 解析 ==××=. 与球有关的切、接问题例3 已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )A. B.2 C. D.3答案 C解析 如图所示,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=BC=,OM=AA1=6,所以球O的半径R=OA==.本例中若将直三棱柱改为“侧棱和底面边长都是3的正四棱锥”,则其外接球的半径是多少?解 依题意,得该正四棱锥底面对角线的长为3×=6,高为=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.此正四面体的表面积S1与其内切球的表面积S2的比值为多少?解 正四面体棱长为a,则正四面体表面积为S1=4×·a2=a2,其内切球半径r为正四面体高的,即r=·a=a,因此内切球表面积为S2=4πr2=,则==.思维升华 “切”“接”问题的处理规律(1)“切”的处理首先要找准切点,通过作过球心的截面来解决.(2)“接”的处理抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.跟踪训练2 (2018·全国Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为( )A.12 B.18 C.24 D.54答案 B解析 由等边△ABC的面积为9,可得AB2=9,所以AB=6,所以等边△ABC的外接圆的半径为r=AB=2.设球的半径为R,球心到等边△ABC的外接圆圆心的距离为d,则d===2.所以三棱锥D-ABC高的最大值为2+4=6,所以三棱锥D-ABC体积的最大值为×9×6=18.