所属成套资源:2020北师大版高考文科数学一轮复习课后限时集训 (含解析)
2020版高考数学一轮复习课后限时集训38《空间图形的基本关系与公理》文数(含解析)北师大版 试卷
展开课后限时集训(三十八) (建议用时:60分钟)A组 基础达标一、选择题1.下列命题中,真命题的个数为( )①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合; ②两条直线可以确定一个平面;③空间中,相交于同一点的三条直线在同一平面内;④若M∈α,M∈β,α∩β=l,则M∈l.A.1 B.2 C.3 D.4B [根据公理2,可判断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故③是假命题;根据平面的性质可知④是真命题.综上,真命题的个数为2.]2.α是一个平面,m,n是两条直线,A是一个点,若m⃘α,nα,且A∈m,A∈α,则m,n的位置关系不可能是( )A.垂直 B.相交C.异面 D.平行D [∵m⃘α,nα,且A∈m,A∈α,∴n在平面α内,m与平面α相交于点A,∴m和n异面或相交,一定不平行.]3.在正方体ABCDA1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是( )A.相交 B.异面C.平行 D.垂直A [由BCAD,ADA1D1知,BCA1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF平面A1BCD1,EF∩D1C=F,则A1B与EF相交.]4.a,b,c是两两不同的三条直线,下面四个命题中,真命题是( )A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥cC [对于A,B,D,a与c可能相交、平行或异面,因此A,B,D不正确,根据异面直线所成角的定义知C正确.]5.如图所示,在底面为正方形,侧棱垂直于底面的四棱柱ABCDA1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为( )A. B.C. D.D [连接BC1,易证BC1∥AD1,则∠A1BC1即为异面直线A1B与AD1所成的角.连接A1C1,由AB=1,AA1=2,则A1C1=,A1B=BC1=,在△A1BC1中,由余弦定理得cos∠A1BC1==.]二、填空题6.(2019·长春模拟)下列命题中不正确的是________.(填序号)①没有公共点的两条直线是异面直线;②分别和两条异面直线都相交的两直线异面;③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行;④—条直线和两条异面直线都相交,则它们可以确定两个平面.①② [命题①错,没有公共点的两条直线平行或异面;命题②错,此时两直线有可能相交;命题③正确,因为若直线a和b异面,c∥a,则c与b不可能平行,用反证法证明如下:若c∥b,又c∥a,则a∥b,这与a,b异面矛盾,故c与b不平行;命题④正确,若c与两异面直线a,b都相交,可知a,c可确定一个平面,b,c也可确定一个平面,这样,a,b,c共确定两个平面.]7.(2019·荆门模拟)已知在四面体ABCD中,E,F分别是AC,BD的中点.若AB=2,CD=4,EF⊥AB,则EF与CD所成角的度数为________.30° [如图,设G为AD的中点,连接GF,GE,则GF,GE分别为△ABD,△ACD的中位线.由此可得GF∥AB,且GF=AB=1,GE∥CD,且GE=CD=2,∴∠FEG或其补角即为EF与CD所成的角.又∵EF⊥AB,GF∥AB,∴EF⊥GF.因此,在Rt△EFG中,GF=1,GE=2,sin∠GEF==,可得∠GEF=30°,∴EF与CD所成角的度数为30°.]8.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.②③④ [如图,把平面展开图还原成正四面体,知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE与MN垂直,故②③④正确.]三、解答题9.已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且CG=BC,CH=DC.求证:(1)E,F,G,H四点共面;(2)三直线FH,EG,AC共点.[证明] (1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EF∥BD.又因为CG=BC,CH=DC,所以GH∥BD,所以EF∥GH,所以E,F,G,H四点共面.(2)易知FH与直线AC不平行,但共面,所以设FH∩AC=M,所以M∈平面EFHG,M∈平面ABC.又因为平面EFHG∩平面ABC=EG,所以M∈EG,所以FH,EG,AC共点.10.如图所示,在三棱锥PABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱锥PABC的体积;(2)异面直线BC与AD所成角的余弦值.[解] (1)S△ABC=×2×2=2,三棱锥PABC的体积为V=S△ABC·PA=×2×2=.(2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE是异面直线BC与AD所成的角(或其补角).在△ADE中,DE=2,AE=,AD=2,cos∠ADE==.故异面直线BC与AD所成角的余弦值为.B组 能力提升1.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( )A. B. C. D.B [画出正四面体ABCD的直观图,如图所示.设其棱长为2,取AD的中点F,连接EF,设EF的中点为O,连接CO,则EF∥BD,则∠FEC就是异面直线CE与BD所成的角.△ABC为等边三角形,则CE⊥AB,易得CE=,同理可得CF=,故CE=CF.因为OE=OF,所以CO⊥EF.又EO=EF=BD=,所以cos∠FEC===.]2.如图所示,在四面体ABCD中作截面PQR,若PQ与CB的延长线交于点M,RQ与DB的延长线交于点N,RP与DC的延长线交于点K.给出以下命题:①直线MN平面PQR;②点K在直线MN上;③M,N,K,A四点共面.其中正确结论的序号为________.①②③ [由题意知,M∈PQ,N∈RQ,K∈RP,从而点M,N,K∈平面PQR.所以直线MN平面PQR,故①正确.同理可得点M,N,K∈平面BCD.从而点M,N,K在平面PQR与平面BCD的交线上,即点K在直线MN上,故②正确.因为A∉直线MN,从而点M,N,K,A四点共面,故③正确.]3.如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________. [如图,将原图补成正方体ABCDQGHP,连接AG,GP,则GP∥BD,所以∠APG为异面直线AP与BD所成的角,在△AGP中,AG=GP=AP,所以∠APG=.]4.如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BCAD,BEFA,G,H分别为FA,FD的中点.(1)求证:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?[解] (1)证明:由题设知,FG=GA,FH=HD,所以GHAD.又BCAD,故GHBC.所以四边形BCHG是平行四边形.(2)C,D,F,E四点共面.理由如下:由BEFA,G是FA的中点知,BEGF,所以EFBG.由(1)知BG∥CH,所以EF∥CH,故EC,FH共面.又点D在直线FH上,所以C,D,F,E四点共面.