还剩30页未读,
继续阅读
所属成套资源:中考真题试卷含答案
成套系列资料,整套一键下载
- 北京市2018年中考数学试卷-含答案解析 试卷 1 次下载
- 广东省深圳市2018年中考数学试题-含答案解析 试卷 12 次下载
- 山东省临沂市2019年中考数学试题 试卷 0 次下载
- 山东省临沂市2019年中考数学试题-含答案解析 试卷 0 次下载
- 浙江省宁波市2019年中考数学试题-含答案解析 试卷 0 次下载
北京市2019年中考数学试题-含答案解析
展开
绝密★启用前
北京市2019年中考数学试题
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、单选题
1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )
A.0.439×106 B.4.39×106 C.4.39×105 D.139×103
2.下列倡导节约的图案中,是轴对称图形的是( )
A. B. C. D.
3.正十边形的外角和为( )
A.180° B.360° C.720° D.1440°
4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为( )
A.-3 B.-2 C.-1 D.1
5.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是( )
A.∠COM=∠COD B.若OM=MN,则∠AOB=20°
C.MN∥CD D.MN=3CD
6.如果,那么代数式的值为( )
A.-3 B.-1 C.1 D.3
7.用三个不等式,,中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )
A.0 B.1 C.2 D.3
8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.
学 生
类 型
人数
时间
性别
男
7
31
25
30
4
女
8
29
26
32
8
学段
初中
25
36
44
11
高中
下面有四个推断:
①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间
②这200名学生参加公益劳动时间的中位数在20-30之间
③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间
④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间
所有合理推断的序号是( )
A.①③ B.②④ C.①②③ D.①②③④
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
9.若分式的值为0,则的值为______.
10.如图,已知△ABC,通过测量、计算得△ABC的面积约为____cm2.(结果保留一位小数)
11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)
12.如图所示的网格是正方形网格,则=_____°(点A,B,P是网格线交点).
13.在平面直角坐标系中,点在双曲线上.点关于轴的对称点在双曲线上,则的值为______.
14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.
15.小天想要计算一组数据92,90,94,86,99,85的方差.在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,4,9,5.记这组新数据的方差为,则______. (填“”,“”或“”)
16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合).
对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.
评卷人
得分
三、解答题
17.计算:.
18.解不等式组:
19.关于x的方程有实数根,且m为正整数,求m的值及此时方程的根.
20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.
(1)求证:AC⊥EF;
(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=,求AO的长.
21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:
a.国家创新指数得分的频数分布直方图(数据分成7组:
30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:
d.中国的国家创新指数得分为69.5.
(以上数据来源于《国家创新指数报告(2018)》)
根据以上信息,回答下列问题:
(1)中国的国家创新指数得分排名世界第______;
(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;
(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)
(4)下列推断合理的是______.
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
22.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD.
(1)求证:AD=CD;
(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.
23.小云想用7天的时间背诵若干首诗词,背诵计划如下:
①将诗词分成4组,第i组有首,i =1,2,3,4;
②对于第i组诗词,第i天背诵第一遍,第()天背诵第二遍,第()天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4;
第1天
第2天
第3天
第4天
第5天
第6天
第7天
第1组
第2组
第3组
第4组
③每天最多背诵14首,最少背诵4首.
解答下列问题:
(1)填入补全上表;
(2)若,,,则的所有可能取值为______;
(3)7天后,小云背诵的诗词最多为______首.
24.如图,P是AB与弦AB所围成的图形的外部的一定点,C是AB上一动点,连接PC交弦AB于点D.
小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.
下面是小腾的探究过程,请补充完整:
(1)对于点C在AB上的不同位置,画图、测量,得到了线段PC,PD,AD的长度 的几组值,如下表:
在PC,PD,AD的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.
25.在平面直角坐标系中,直线l:与直线,直线分别交于点A,B,直线与直线交于点.
(1)求直线与轴的交点坐标;
(2)横、纵坐标都是整数的点叫做整点.记线段围成的区域(不含边界)为.
①当时,结合函数图象,求区域内的整点个数;
②若区域内没有整点,直接写出的取值范围.
26.在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.
(1)求点B的坐标(用含的式子表示);
(2)求抛物线的对称轴;
(3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围.
27.已知,H为射线OA上一定点,,P为射线OB上一点,M为线段OH上一动点,连接PM,满足为钝角,以点P为中心,将线段PM顺时针旋转,得到线段PN,连接ON.
(1)依题意补全图1;
(2)求证:;
(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.
28.在△ABC中,,分别是两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,下图中是△ABC的一条中内弧.
(1)如图,在Rt△ABC中,分别是的中点.画出△ABC的最长的中内弧,并直接写出此时的长;
(2)在平面直角坐标系中,已知点,在△ABC中,分别是的中点.
①若,求△ABC的中内弧所在圆的圆心的纵坐标的取值范围;
②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.
参考答案
1.C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将439000用科学记数法表示为4.39×105.
故选:C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.C
【解析】
【分析】
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.
【详解】
解:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误.
故选:C.
【点睛】
此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
3.B
【解析】
【分析】
根据多边的外角和定理进行选择.
【详解】
解:因为任意多边形的外角和都等于360°,
所以正十边形的外角和等于360°,.
故选:B.
【点睛】
本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.
4.A
【解析】
【分析】
根据CO=BO可得点C表示的数为-2,据此可得a=-2-1=-3.
【详解】
解:∵点C在原点的左侧,且CO=BO,
∴点C表示的数为-2,
∴a=-2-1=-3.
故选:A.
【点睛】
本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.
5.D
【解析】
【分析】
由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.
【详解】
解:由作图知CM=CD=DN,
∴∠COM=∠COD,故A选项正确;
∵OM=ON=MN,
∴△OMN是等边三角形,
∴∠MON=60°,
∵CM=CD=DN,
∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;
∵∠MOA=∠AOB=∠BON=20°,
∴∠OCD=∠OCM=80°,
∴∠MCD=160°,
又∠CMN=∠AON=20°,
∴∠MCD+∠CMN=180°,
∴MN∥CD,故C选项正确;
∵MC+CD+DN>MN,且CM=CD=DN,
∴3CD>MN,故D选项错误;
故选:D.
【点睛】
本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.
6.D
【解析】
【分析】
原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.
【详解】
解:原式=
∴原式=3,故选D.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
7.D
【解析】
【分析】
由题意得出3个命题,由不等式的性质再判断真假即可.
【详解】
解:命题①,如果,那么.
∵,∴,∵,∴,整理得,∴该命题是真命题.
命题②,如果那么.
∵∴∵,∴,∴.
∴该命题为真命题.
命题③,如果,那么.
∵∴∵,∴,∴
∴该命题为真命题.
故,选D
【点睛】
本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.
8.C
【解析】
【分析】
根据中位数与平均数的意义对每个选项逐一判断即可.
【详解】
解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;
②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.
③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.
④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当
0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误
【点睛】
本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
9.1.
【解析】
【分析】
根据分式的值为零的条件即可得出.
【详解】
解:∵分式的值为0,
∴x-1=0且x≠0,
∴x=1.
故答案为1.
【点睛】
本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.
10.1.9
【解析】
【分析】
过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.
【详解】
解:过点C作CD⊥AB的延长线于点D,如图所示.
经过测量,AB=2.2cm,CD=1.7cm,
(cm2).
故答案为:1.9.
【点睛】
本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.
11.①②
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.
【详解】
解:长方体主视图,左视图,俯视图都是矩形,
圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,
圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,
故答案为:①②.
【点睛】
本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.
12.45.
【解析】
【分析】
延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.
【详解】
解:延长AP交格点于D,连接BD,
则PD2=BD2=1+22=5,PB2=12+32=10,
∴PD2+DB2=PB2,
∴∠PDB=90°,
即△PBD为等腰直角三角形,
∴∠DPB=∠PAB+∠PBA=45°,
故答案为:45.
【点睛】
本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.
13.0.
【解析】
【分析】
由点A(a,b)(a>0,b>0)在双曲线上,可得k1=ab,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.
【详解】
解:∵点A(a,b)(a>0,b>0)在双曲线上,
∴k1=ab;
又∵点A与点B关于x轴的对称,
∴B(a,-b)
∵点B在双曲线上,
∴k2=-ab;
∴k1+k2=ab+(-ab)=0;
故答案为:0.
【点睛】
考查反比例函数图象上的点坐标的特征,关于x轴对称的点的坐标的特征以及互为相反数的和为0的性质.
14.12.
【解析】
【分析】
由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.
【详解】
解:如图1所示:
∵四边形ABCD是菱形,
∴OA=OC,OB=OD,AC⊥BD,
设OA=x,OB=y,
由题意得:,解得:,
∴AC=2OA=6,BD=2OB=4,
∴菱形ABCD的面积=;
故答案为:12.
【点睛】
本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.
15.=
【解析】
【分析】
根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.
【详解】
解:∵两组数据的平均值分别为91和1,
=
∴
故答案为=
【点睛】
本题考查方差的意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.
16.①②③
【解析】
【分析】
根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.
【详解】
解:
①如图,∵四边形ABCD是矩形,连接AC,BD交于O,
过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,
则四边形MNPQ是平行四边形,
故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,
故存在无数个四边形MNPQ是平行四边形;故正确;
②如图,当PM=QN时,四边形MNPQ是菱形,故存在无数个四边形MNPQ是矩形;故正确;
③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;
④当四边形MNPQ是正方形时,MQ=PQ,
则△AMQ≌△DQP,
∴AM=QD,AQ=PD,
∵PD=BM,
∴AB=AD,
∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;
故答案为:①②③.
【点睛】
本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.
17.
【解析】
【分析】
根据绝对值、零指数幂、特殊角的三角函数值、负指数幂法则计算即可
【详解】
原式=
【点睛】
本题考查零指数幂、特殊角的三角函数值,负指数幂,熟练掌握相关的知识是解题的关键.
18.不等式组的解集为.
【解析】
【分析】
首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.
【详解】
解:解不等式①得:,∴
解不等式②得:,∴
∴不等式组的解集为
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
19.,此时方程的根为
【解析】
【分析】
直接利用根的判别式≥0得出m的取值范围进而解方程得出答案.
【详解】
解:∵关于x的方程x2-2x+2m-1=0有实数根,
∴b2-4ac=4-4(2m-1)≥0,
解得:m≤1,
∵m为正整数,
∴m=1,
∴此时二次方程为:x2-2x+1=0,
则(x-1)2=0,
解得:x1=x2=1.
【点睛】
此题主要考查了根的判别式,正确得出m的值是解题关键.
20.(1)证明见解析;(2)AO=1。
【解析】
【分析】
(1)由菱形的性质得出AB=AD,AC平分∠BAD,再根据等腰三角形的三线合一即可;
(2)根据菱形的性质和已知条件得出四边形EBDG为平行四边形,得出∠G=∠ABD,再根据tanG=即可求出AO的长.
【详解】
(1)证明:∵四边形ABCD为菱形 ∴AB=AD,AC平分∠BAD
∵BE=DF, ∴ , ∴AE=AF
∴△AEF是等腰三角形, ∵AC平分∠BAD, ∴AC⊥EF
(2)解:如图2所示:
∵四边形ABCD为菱形,∴CG∥AB,BO=BD=2,∵EF∥BD
∴四边形EBDG为平行四边形,∴∠G=∠ABD,∴tan∠ABD=tan∠G=
∴tan∠ABD=,∴AO=1
【点睛】
本题考查了菱形的性质、平行线的判定与性质、解直角三角形,等腰三角形的性质等知识;熟练掌握菱形的性质是解题的关键.
21.(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.
【解析】
【分析】
(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;
(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;
(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;
(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.
【详解】
解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,
∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,
故答案为:17;
(2)如图所示:
(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;
故答案为:2.8;
(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,
①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;
故答案为:①②.
【点睛】
本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.
22.依题意画出图形G为⊙O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1个.
【解析】
【分析】
(1)根据线段垂直平分线的性质得出图形G为⊙O,再根据在同圆或等圆中相等的圆周角所对的弧相等得出;从而得出弦相等即可.
(2)先根据HL得出△CDF≌△CMF,得出DF=MF,从而得出BC为弦DM的垂直平分线,根据圆心角和圆周角之间的关系定理得出∠ABC=∠COD,再证得
DE为⊙O的切线即可
【详解】
如图所示,依题意画出图形G为⊙O,如图所示
(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,
∴,∴AD=CD
(2)解:∵AD=CD,AD=CM,∴CD=CM.∵DF⊥BC,∴∠DFC=∠CFM=90°
在Rt△CDF和Rt△CMF中
,∴△CDF≌△CMF(HL),∴DF=MF,∴BC为弦DM的垂直平分线
∴BC为⊙O的直径,连接OD
∵∠COD=2∠CBD,∠ABC=2∠CBD,∴∠ABC=∠COD,∴OD∥BE.
又∵DE⊥BA,∴∠DEB=90°,∴∠ODE=90°,即OD⊥DE,∴DE为⊙O的切线.
∴直线DE与图形G的公共点个数为1个.
【点睛】
本题考查了垂直平分线的性质,圆心角和圆周角之间的关系定理,切线的判定,熟练掌握相关的知识是解题的关键.
23.(1)如表所示,见解析;(2)4,5,6;(3)23.
【解析】
【分析】
(1)根据表中的规律即可得到结论;
(2)根据题意列不等式即可得到结论;
(3)根据题意列不等式,即可得到结论.
【详解】
解:(1)
第1天
第2天
第3天
第4天
第5天
第6天
第7天
第1组
x1
x1
x1
第2组
x2
x2
x2
第3组
x3
x3
x3
第4组
x4
x4
x4
(2)∵每天最多背诵14首,最少背诵4首,
∴x1≥4,x3≥4,x4≥4,
∴x1+x3≥8①,
∵x1+x3+x4≤14②,
把①代入②得,x4≤6,
∴4≤x4≤6,
∴x4的所有可能取值为4,5,6,
故答案为:4,5,6;
(3)∵每天最多背诵14首,最少背诵4首,
∴由第2天,第3天,第4天,第5天得,
x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,
①+②+④-③得,3x2≤28,
,
,
∴7天后,小云背诵的诗词最多为23首,
故答案为:23.
【点睛】
本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.
24.(1)AD, PC,PD;(2)如图所示,见解析;(3)2.29或3.98
【解析】
【分析】
(1)根据表格中的数据分析即可得出;
(2)根据表格数据在坐标系中描点、连线即可,
(3)根据图形观察结合表中数据即可得出
【详解】
(1)AD, PC,PD;
(2)如图所示,
(3)2.29或3.98
【点睛】
本题考查了函数和函数的图象,根据表格画出函数图象,得出相应的信息是解题的关键
25.(1)直线与轴交点坐标为(0,1);(2)①整点有(0,-1),(0,0),(1,-1),(1,0),(1,1),(1,2)共6个点,②-1≤k<0或k=-2.
【解析】
【分析】
(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);
(2)①当k=2时,A(2,5),B,C(2,-2),在W区域内有6个整数点;②当x=k+1时,y=-k+1,则有k2+2k=0,k=-2,当0>k≥-1时,W内没有整数点;
【详解】
解:(1)令x=0,y=1,
∴直线l与y轴的交点坐标(0,1);
(2)由题意,A(k,k2+1),B,C(k,-k),
①当k=2时,A(2,5),B,C(2,-2),
在W区域内有6个整数点:(0,0),(0,-1),(1,0),(1,-1),(1,1),(1,2);
②直线AB的解析式为y=kx+1,
当x=k+1时,y=-k+1,则有k2+2k=0,
∴k=-2,
当0>k≥-1时,W内没有整数点,
∴当0>k≥-1或k=-2时W内没有整数点;
【点睛】
本题考查一次函数图象上点的特征;能够数形结合解题,根据k变化分析W区域内整数点的情况是解题的关键.
26.(1)点B的坐标为;(2)对称轴为直线;(3)当时,抛物线与线段PQ恰有一个公共点.
【解析】
【分析】
(1)向右平移2个单位长度,得到点;
(2)A与B关于对称轴x=1对称;
(3))①a>0时,当x=2时,,当时,x=0或x=2,所以函数与AB无交点;②a<0时,当y=2时,,或当时,;
【详解】
解:(1)∵抛物线与轴交于点A,∴令,得,
∴点A的坐标为,∵点A向右平移两个单位长度,得到点B,
∴点B的坐标为;
(2)∵抛物线过点和点,由对称性可得,抛物线对称轴为
直线,故对称轴为直线
(3)∵对称轴x=1,
∴b-2a,,
①a>0时,
当x=2时,,当x=0或x=2,
∴函数与AB无交点;
②a<0时,
当y=2时,,
或当时,;
∴当时,抛物线与线段PQ恰有一个公共点;
(3)①当时,则,分析图象可得:根据抛物线的对称性,抛物线不可能同时经过点A和点P;也不可能同时经过点B和点Q,所以,此时线段PQ与抛物线没有交点.
②当时,则.
分析图象可得:根据抛物线的对称性,抛物线不可能同时经过点A和点P;但当点Q在点B上方或与点B重合时,抛物线与线段PQ恰有一个公共点,此时即
综上所述,当时,抛物线与线段PQ恰有一个公共点.
【点睛】
本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.
27.(1)如图所示见解析;(2)见解析;(3)OP=2.证明见解析.
【解析】
【分析】
(1)根据题意画出图形即可.
(2)由旋转可得∠MPN=150°,故∠OPN=150°-∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°-30°-∠OPM=150°-∠OPM,得证.
(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.再设DM=CP=x,所以OC=OP+PC=2+x,MH=MD+DH=x+1,由于点M、Q关于点H对称,得出DQ=DH+HQ=1+x+1=2+x,得出OC=DQ,再利用SAS得出△OCN≌△QDP即可
【详解】
解:(1)如图1所示为所求.
(2)设∠OPM=α,
∵线段PM绕点P顺时针旋转150°得到线段PN
∴∠MPN=150°,PM=PN
∴∠OPN=∠MPN-∠OPM=150°-α
∵∠AOB=30°
∴∠OMP=180°-∠AOB-∠OPM=180°-30°-α=150°-α
∴∠OMP=∠OPN
(3)OP=2时,总有ON=QP,证明如下:
过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2
∴∠NCP=∠PDM=∠PDQ=90°
∵∠AOB=30°,OP=2
∴DH=OH-OD=1
∵∠OMP=∠OPN
∴180°-∠OMP=180°-∠OPN
即∠PMD=∠NPC
在△PDM与△NCP中
∴△PDM≌△NCP(AAS)
∴PD=NC,DM=CP
设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1
∵点M关于点H的对称点为Q
∴HQ=MH=x+1
∴DQ=DH+HQ=1+x+1=2+x
∴OC=DQ
在△OCN与△QDP中
∴△OCN≌△QDP(SAS)
∴ON=QP
【点睛】
本题考查了根据题意画图,旋转的性质,三角形内角和180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以ON=QP为条件反推OP的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP=2为条件构造全等证明ON=QP.
28.(1);(2)①P的纵坐标或;②.
【解析】
【分析】
(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,的长即以DE为直径的圆周长的一半;
(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,,①当时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.
【详解】
解:(1)如图2,
以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=2,D,E分别是AB,AC的中点,,
∴弧;
(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE垂直平分线FP,作EG⊥AC交FP于G,
①当时,C(2,0),∴D(0,1),E(1,1),,
设由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,
∵OA=OC,∠AOC=90°
∴∠ACO=45°,
∵DE∥OC
∴∠AED=∠ACO=45°
作EG⊥AC交直线FP于G,FG=EF=
根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;
综上所述,或m≥1.
②图4,设圆心P在AC上,
∵P在DE中垂线上,
∴P为AE中点,作PM⊥OC于M,则PM=
,
∵DE∥BC
∴∠ADE=∠AOB=90°,
∵PD=PE,
∴∠AED=∠PDE
∵∠AED+∠DAE=∠PDE+∠ADP=90°,
∴∠DAE=∠ADP
由三角形中内弧定义知,PD≤PM
,AE≤3,即,解得:
【点睛】
此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.
北京市2019年中考数学试题
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、单选题
1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )
A.0.439×106 B.4.39×106 C.4.39×105 D.139×103
2.下列倡导节约的图案中,是轴对称图形的是( )
A. B. C. D.
3.正十边形的外角和为( )
A.180° B.360° C.720° D.1440°
4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为( )
A.-3 B.-2 C.-1 D.1
5.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是( )
A.∠COM=∠COD B.若OM=MN,则∠AOB=20°
C.MN∥CD D.MN=3CD
6.如果,那么代数式的值为( )
A.-3 B.-1 C.1 D.3
7.用三个不等式,,中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )
A.0 B.1 C.2 D.3
8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.
学 生
类 型
人数
时间
性别
男
7
31
25
30
4
女
8
29
26
32
8
学段
初中
25
36
44
11
高中
下面有四个推断:
①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间
②这200名学生参加公益劳动时间的中位数在20-30之间
③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间
④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间
所有合理推断的序号是( )
A.①③ B.②④ C.①②③ D.①②③④
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
9.若分式的值为0,则的值为______.
10.如图,已知△ABC,通过测量、计算得△ABC的面积约为____cm2.(结果保留一位小数)
11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)
12.如图所示的网格是正方形网格,则=_____°(点A,B,P是网格线交点).
13.在平面直角坐标系中,点在双曲线上.点关于轴的对称点在双曲线上,则的值为______.
14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.
15.小天想要计算一组数据92,90,94,86,99,85的方差.在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,4,9,5.记这组新数据的方差为,则______. (填“”,“”或“”)
16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合).
对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.
评卷人
得分
三、解答题
17.计算:.
18.解不等式组:
19.关于x的方程有实数根,且m为正整数,求m的值及此时方程的根.
20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.
(1)求证:AC⊥EF;
(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=,求AO的长.
21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:
a.国家创新指数得分的频数分布直方图(数据分成7组:
30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:
d.中国的国家创新指数得分为69.5.
(以上数据来源于《国家创新指数报告(2018)》)
根据以上信息,回答下列问题:
(1)中国的国家创新指数得分排名世界第______;
(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;
(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)
(4)下列推断合理的是______.
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
22.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD.
(1)求证:AD=CD;
(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.
23.小云想用7天的时间背诵若干首诗词,背诵计划如下:
①将诗词分成4组,第i组有首,i =1,2,3,4;
②对于第i组诗词,第i天背诵第一遍,第()天背诵第二遍,第()天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4;
第1天
第2天
第3天
第4天
第5天
第6天
第7天
第1组
第2组
第3组
第4组
③每天最多背诵14首,最少背诵4首.
解答下列问题:
(1)填入补全上表;
(2)若,,,则的所有可能取值为______;
(3)7天后,小云背诵的诗词最多为______首.
24.如图,P是AB与弦AB所围成的图形的外部的一定点,C是AB上一动点,连接PC交弦AB于点D.
小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.
下面是小腾的探究过程,请补充完整:
(1)对于点C在AB上的不同位置,画图、测量,得到了线段PC,PD,AD的长度 的几组值,如下表:
在PC,PD,AD的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.
25.在平面直角坐标系中,直线l:与直线,直线分别交于点A,B,直线与直线交于点.
(1)求直线与轴的交点坐标;
(2)横、纵坐标都是整数的点叫做整点.记线段围成的区域(不含边界)为.
①当时,结合函数图象,求区域内的整点个数;
②若区域内没有整点,直接写出的取值范围.
26.在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.
(1)求点B的坐标(用含的式子表示);
(2)求抛物线的对称轴;
(3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围.
27.已知,H为射线OA上一定点,,P为射线OB上一点,M为线段OH上一动点,连接PM,满足为钝角,以点P为中心,将线段PM顺时针旋转,得到线段PN,连接ON.
(1)依题意补全图1;
(2)求证:;
(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.
28.在△ABC中,,分别是两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,下图中是△ABC的一条中内弧.
(1)如图,在Rt△ABC中,分别是的中点.画出△ABC的最长的中内弧,并直接写出此时的长;
(2)在平面直角坐标系中,已知点,在△ABC中,分别是的中点.
①若,求△ABC的中内弧所在圆的圆心的纵坐标的取值范围;
②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.
参考答案
1.C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将439000用科学记数法表示为4.39×105.
故选:C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.C
【解析】
【分析】
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.
【详解】
解:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误.
故选:C.
【点睛】
此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
3.B
【解析】
【分析】
根据多边的外角和定理进行选择.
【详解】
解:因为任意多边形的外角和都等于360°,
所以正十边形的外角和等于360°,.
故选:B.
【点睛】
本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.
4.A
【解析】
【分析】
根据CO=BO可得点C表示的数为-2,据此可得a=-2-1=-3.
【详解】
解:∵点C在原点的左侧,且CO=BO,
∴点C表示的数为-2,
∴a=-2-1=-3.
故选:A.
【点睛】
本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.
5.D
【解析】
【分析】
由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.
【详解】
解:由作图知CM=CD=DN,
∴∠COM=∠COD,故A选项正确;
∵OM=ON=MN,
∴△OMN是等边三角形,
∴∠MON=60°,
∵CM=CD=DN,
∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;
∵∠MOA=∠AOB=∠BON=20°,
∴∠OCD=∠OCM=80°,
∴∠MCD=160°,
又∠CMN=∠AON=20°,
∴∠MCD+∠CMN=180°,
∴MN∥CD,故C选项正确;
∵MC+CD+DN>MN,且CM=CD=DN,
∴3CD>MN,故D选项错误;
故选:D.
【点睛】
本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.
6.D
【解析】
【分析】
原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.
【详解】
解:原式=
∴原式=3,故选D.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
7.D
【解析】
【分析】
由题意得出3个命题,由不等式的性质再判断真假即可.
【详解】
解:命题①,如果,那么.
∵,∴,∵,∴,整理得,∴该命题是真命题.
命题②,如果那么.
∵∴∵,∴,∴.
∴该命题为真命题.
命题③,如果,那么.
∵∴∵,∴,∴
∴该命题为真命题.
故,选D
【点睛】
本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.
8.C
【解析】
【分析】
根据中位数与平均数的意义对每个选项逐一判断即可.
【详解】
解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;
②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.
③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.
④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当
0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误
【点睛】
本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
9.1.
【解析】
【分析】
根据分式的值为零的条件即可得出.
【详解】
解:∵分式的值为0,
∴x-1=0且x≠0,
∴x=1.
故答案为1.
【点睛】
本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.
10.1.9
【解析】
【分析】
过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.
【详解】
解:过点C作CD⊥AB的延长线于点D,如图所示.
经过测量,AB=2.2cm,CD=1.7cm,
(cm2).
故答案为:1.9.
【点睛】
本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.
11.①②
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.
【详解】
解:长方体主视图,左视图,俯视图都是矩形,
圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,
圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,
故答案为:①②.
【点睛】
本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.
12.45.
【解析】
【分析】
延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.
【详解】
解:延长AP交格点于D,连接BD,
则PD2=BD2=1+22=5,PB2=12+32=10,
∴PD2+DB2=PB2,
∴∠PDB=90°,
即△PBD为等腰直角三角形,
∴∠DPB=∠PAB+∠PBA=45°,
故答案为:45.
【点睛】
本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.
13.0.
【解析】
【分析】
由点A(a,b)(a>0,b>0)在双曲线上,可得k1=ab,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.
【详解】
解:∵点A(a,b)(a>0,b>0)在双曲线上,
∴k1=ab;
又∵点A与点B关于x轴的对称,
∴B(a,-b)
∵点B在双曲线上,
∴k2=-ab;
∴k1+k2=ab+(-ab)=0;
故答案为:0.
【点睛】
考查反比例函数图象上的点坐标的特征,关于x轴对称的点的坐标的特征以及互为相反数的和为0的性质.
14.12.
【解析】
【分析】
由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.
【详解】
解:如图1所示:
∵四边形ABCD是菱形,
∴OA=OC,OB=OD,AC⊥BD,
设OA=x,OB=y,
由题意得:,解得:,
∴AC=2OA=6,BD=2OB=4,
∴菱形ABCD的面积=;
故答案为:12.
【点睛】
本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.
15.=
【解析】
【分析】
根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.
【详解】
解:∵两组数据的平均值分别为91和1,
=
∴
故答案为=
【点睛】
本题考查方差的意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.
16.①②③
【解析】
【分析】
根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.
【详解】
解:
①如图,∵四边形ABCD是矩形,连接AC,BD交于O,
过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,
则四边形MNPQ是平行四边形,
故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,
故存在无数个四边形MNPQ是平行四边形;故正确;
②如图,当PM=QN时,四边形MNPQ是菱形,故存在无数个四边形MNPQ是矩形;故正确;
③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;
④当四边形MNPQ是正方形时,MQ=PQ,
则△AMQ≌△DQP,
∴AM=QD,AQ=PD,
∵PD=BM,
∴AB=AD,
∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;
故答案为:①②③.
【点睛】
本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.
17.
【解析】
【分析】
根据绝对值、零指数幂、特殊角的三角函数值、负指数幂法则计算即可
【详解】
原式=
【点睛】
本题考查零指数幂、特殊角的三角函数值,负指数幂,熟练掌握相关的知识是解题的关键.
18.不等式组的解集为.
【解析】
【分析】
首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.
【详解】
解:解不等式①得:,∴
解不等式②得:,∴
∴不等式组的解集为
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
19.,此时方程的根为
【解析】
【分析】
直接利用根的判别式≥0得出m的取值范围进而解方程得出答案.
【详解】
解:∵关于x的方程x2-2x+2m-1=0有实数根,
∴b2-4ac=4-4(2m-1)≥0,
解得:m≤1,
∵m为正整数,
∴m=1,
∴此时二次方程为:x2-2x+1=0,
则(x-1)2=0,
解得:x1=x2=1.
【点睛】
此题主要考查了根的判别式,正确得出m的值是解题关键.
20.(1)证明见解析;(2)AO=1。
【解析】
【分析】
(1)由菱形的性质得出AB=AD,AC平分∠BAD,再根据等腰三角形的三线合一即可;
(2)根据菱形的性质和已知条件得出四边形EBDG为平行四边形,得出∠G=∠ABD,再根据tanG=即可求出AO的长.
【详解】
(1)证明:∵四边形ABCD为菱形 ∴AB=AD,AC平分∠BAD
∵BE=DF, ∴ , ∴AE=AF
∴△AEF是等腰三角形, ∵AC平分∠BAD, ∴AC⊥EF
(2)解:如图2所示:
∵四边形ABCD为菱形,∴CG∥AB,BO=BD=2,∵EF∥BD
∴四边形EBDG为平行四边形,∴∠G=∠ABD,∴tan∠ABD=tan∠G=
∴tan∠ABD=,∴AO=1
【点睛】
本题考查了菱形的性质、平行线的判定与性质、解直角三角形,等腰三角形的性质等知识;熟练掌握菱形的性质是解题的关键.
21.(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.
【解析】
【分析】
(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;
(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;
(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;
(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.
【详解】
解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,
∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,
故答案为:17;
(2)如图所示:
(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;
故答案为:2.8;
(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,
①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;
故答案为:①②.
【点睛】
本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.
22.依题意画出图形G为⊙O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1个.
【解析】
【分析】
(1)根据线段垂直平分线的性质得出图形G为⊙O,再根据在同圆或等圆中相等的圆周角所对的弧相等得出;从而得出弦相等即可.
(2)先根据HL得出△CDF≌△CMF,得出DF=MF,从而得出BC为弦DM的垂直平分线,根据圆心角和圆周角之间的关系定理得出∠ABC=∠COD,再证得
DE为⊙O的切线即可
【详解】
如图所示,依题意画出图形G为⊙O,如图所示
(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,
∴,∴AD=CD
(2)解:∵AD=CD,AD=CM,∴CD=CM.∵DF⊥BC,∴∠DFC=∠CFM=90°
在Rt△CDF和Rt△CMF中
,∴△CDF≌△CMF(HL),∴DF=MF,∴BC为弦DM的垂直平分线
∴BC为⊙O的直径,连接OD
∵∠COD=2∠CBD,∠ABC=2∠CBD,∴∠ABC=∠COD,∴OD∥BE.
又∵DE⊥BA,∴∠DEB=90°,∴∠ODE=90°,即OD⊥DE,∴DE为⊙O的切线.
∴直线DE与图形G的公共点个数为1个.
【点睛】
本题考查了垂直平分线的性质,圆心角和圆周角之间的关系定理,切线的判定,熟练掌握相关的知识是解题的关键.
23.(1)如表所示,见解析;(2)4,5,6;(3)23.
【解析】
【分析】
(1)根据表中的规律即可得到结论;
(2)根据题意列不等式即可得到结论;
(3)根据题意列不等式,即可得到结论.
【详解】
解:(1)
第1天
第2天
第3天
第4天
第5天
第6天
第7天
第1组
x1
x1
x1
第2组
x2
x2
x2
第3组
x3
x3
x3
第4组
x4
x4
x4
(2)∵每天最多背诵14首,最少背诵4首,
∴x1≥4,x3≥4,x4≥4,
∴x1+x3≥8①,
∵x1+x3+x4≤14②,
把①代入②得,x4≤6,
∴4≤x4≤6,
∴x4的所有可能取值为4,5,6,
故答案为:4,5,6;
(3)∵每天最多背诵14首,最少背诵4首,
∴由第2天,第3天,第4天,第5天得,
x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,
①+②+④-③得,3x2≤28,
,
,
∴7天后,小云背诵的诗词最多为23首,
故答案为:23.
【点睛】
本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.
24.(1)AD, PC,PD;(2)如图所示,见解析;(3)2.29或3.98
【解析】
【分析】
(1)根据表格中的数据分析即可得出;
(2)根据表格数据在坐标系中描点、连线即可,
(3)根据图形观察结合表中数据即可得出
【详解】
(1)AD, PC,PD;
(2)如图所示,
(3)2.29或3.98
【点睛】
本题考查了函数和函数的图象,根据表格画出函数图象,得出相应的信息是解题的关键
25.(1)直线与轴交点坐标为(0,1);(2)①整点有(0,-1),(0,0),(1,-1),(1,0),(1,1),(1,2)共6个点,②-1≤k<0或k=-2.
【解析】
【分析】
(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);
(2)①当k=2时,A(2,5),B,C(2,-2),在W区域内有6个整数点;②当x=k+1时,y=-k+1,则有k2+2k=0,k=-2,当0>k≥-1时,W内没有整数点;
【详解】
解:(1)令x=0,y=1,
∴直线l与y轴的交点坐标(0,1);
(2)由题意,A(k,k2+1),B,C(k,-k),
①当k=2时,A(2,5),B,C(2,-2),
在W区域内有6个整数点:(0,0),(0,-1),(1,0),(1,-1),(1,1),(1,2);
②直线AB的解析式为y=kx+1,
当x=k+1时,y=-k+1,则有k2+2k=0,
∴k=-2,
当0>k≥-1时,W内没有整数点,
∴当0>k≥-1或k=-2时W内没有整数点;
【点睛】
本题考查一次函数图象上点的特征;能够数形结合解题,根据k变化分析W区域内整数点的情况是解题的关键.
26.(1)点B的坐标为;(2)对称轴为直线;(3)当时,抛物线与线段PQ恰有一个公共点.
【解析】
【分析】
(1)向右平移2个单位长度,得到点;
(2)A与B关于对称轴x=1对称;
(3))①a>0时,当x=2时,,当时,x=0或x=2,所以函数与AB无交点;②a<0时,当y=2时,,或当时,;
【详解】
解:(1)∵抛物线与轴交于点A,∴令,得,
∴点A的坐标为,∵点A向右平移两个单位长度,得到点B,
∴点B的坐标为;
(2)∵抛物线过点和点,由对称性可得,抛物线对称轴为
直线,故对称轴为直线
(3)∵对称轴x=1,
∴b-2a,,
①a>0时,
当x=2时,,当x=0或x=2,
∴函数与AB无交点;
②a<0时,
当y=2时,,
或当时,;
∴当时,抛物线与线段PQ恰有一个公共点;
(3)①当时,则,分析图象可得:根据抛物线的对称性,抛物线不可能同时经过点A和点P;也不可能同时经过点B和点Q,所以,此时线段PQ与抛物线没有交点.
②当时,则.
分析图象可得:根据抛物线的对称性,抛物线不可能同时经过点A和点P;但当点Q在点B上方或与点B重合时,抛物线与线段PQ恰有一个公共点,此时即
综上所述,当时,抛物线与线段PQ恰有一个公共点.
【点睛】
本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.
27.(1)如图所示见解析;(2)见解析;(3)OP=2.证明见解析.
【解析】
【分析】
(1)根据题意画出图形即可.
(2)由旋转可得∠MPN=150°,故∠OPN=150°-∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°-30°-∠OPM=150°-∠OPM,得证.
(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.再设DM=CP=x,所以OC=OP+PC=2+x,MH=MD+DH=x+1,由于点M、Q关于点H对称,得出DQ=DH+HQ=1+x+1=2+x,得出OC=DQ,再利用SAS得出△OCN≌△QDP即可
【详解】
解:(1)如图1所示为所求.
(2)设∠OPM=α,
∵线段PM绕点P顺时针旋转150°得到线段PN
∴∠MPN=150°,PM=PN
∴∠OPN=∠MPN-∠OPM=150°-α
∵∠AOB=30°
∴∠OMP=180°-∠AOB-∠OPM=180°-30°-α=150°-α
∴∠OMP=∠OPN
(3)OP=2时,总有ON=QP,证明如下:
过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2
∴∠NCP=∠PDM=∠PDQ=90°
∵∠AOB=30°,OP=2
∴DH=OH-OD=1
∵∠OMP=∠OPN
∴180°-∠OMP=180°-∠OPN
即∠PMD=∠NPC
在△PDM与△NCP中
∴△PDM≌△NCP(AAS)
∴PD=NC,DM=CP
设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1
∵点M关于点H的对称点为Q
∴HQ=MH=x+1
∴DQ=DH+HQ=1+x+1=2+x
∴OC=DQ
在△OCN与△QDP中
∴△OCN≌△QDP(SAS)
∴ON=QP
【点睛】
本题考查了根据题意画图,旋转的性质,三角形内角和180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以ON=QP为条件反推OP的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP=2为条件构造全等证明ON=QP.
28.(1);(2)①P的纵坐标或;②.
【解析】
【分析】
(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,的长即以DE为直径的圆周长的一半;
(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,,①当时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.
【详解】
解:(1)如图2,
以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=2,D,E分别是AB,AC的中点,,
∴弧;
(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE垂直平分线FP,作EG⊥AC交FP于G,
①当时,C(2,0),∴D(0,1),E(1,1),,
设由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,
∵OA=OC,∠AOC=90°
∴∠ACO=45°,
∵DE∥OC
∴∠AED=∠ACO=45°
作EG⊥AC交直线FP于G,FG=EF=
根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;
综上所述,或m≥1.
②图4,设圆心P在AC上,
∵P在DE中垂线上,
∴P为AE中点,作PM⊥OC于M,则PM=
,
∵DE∥BC
∴∠ADE=∠AOB=90°,
∵PD=PE,
∴∠AED=∠PDE
∵∠AED+∠DAE=∠PDE+∠ADP=90°,
∴∠DAE=∠ADP
由三角形中内弧定义知,PD≤PM
,AE≤3,即,解得:
【点睛】
此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.