|学案下载
终身会员
搜索
    上传资料 赚现金
    2021届山东高考数学一轮创新教学案:第12章 第3讲 绝对值不等式
    立即下载
    加入资料篮
    2021届山东高考数学一轮创新教学案:第12章 第3讲 绝对值不等式01
    2021届山东高考数学一轮创新教学案:第12章 第3讲 绝对值不等式02
    2021届山东高考数学一轮创新教学案:第12章 第3讲 绝对值不等式03
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021届山东高考数学一轮创新教学案:第12章 第3讲 绝对值不等式

    展开

    3讲 绝对值不等式

     

    [考纲解读] 1.理解绝对值意义及几何意义,能利用绝对值三角不等式证明一些简单的绝对值不等式.(重点)

    2.掌握|axb|c|axb|c|xa||xb|c型不等式的解法.(难点)

    [考向预测] 从近三年高考情况来看,本讲是高考的热点内容.预测2021年将会考查:绝对值不等式的解法;绝对值性质的应用及最值;根据不等式恒成立求参数的取值范围.以解答题的形式呈现,属中档题型.

     

     

     

     

    对应学生用书P212

    1.绝对值不等式

    (1)定理

    如果ab是实数,那么|ab||a||b|,当且仅当ab0时,等号成立.

    (2)如果abc是实数,那么|ac||ab||bc|.当且仅当(ab)(bc)0时,等号成立,即b落在ac之间.

    (3)由绝对值不等式定理还可以推得以下几个不等式

    |a1a2an||a1||a2||an|.

    ||a||b|||a±b||a||b|.

    2.绝对值不等式的解法

    (1)形如|axb||cxd|的不等式,可以利用两边平方的形式转化为二次不等式求解.

    (2)绝对值不等式|x|>a|x|<a的解集.

    不等式

    a>0

    a0

    a<0

    |x|<a

    {x|a<x<a}

    |x|>a

    {x|x>ax<a}

    {x|x0}

    R

    |axb|c(c>0)|axb|c(c>0)型不等式的解法.

    |axb|ccaxbc(c>0)

    |axb|caxbcaxbc(c>0)

    1.概念辨析

    (1)不等式|x1||x2|<2的解集为.(  )

    (2)|x|>c的解集为R,则c0.(  )

    (3)|xa||xb|的几何意义是表示数轴上的点x到点ab的距离之和.(  )

    (4)|ab||a||b|当且仅当ab0时等号成立.(  )

    答案 (1) (2)× (3) (4)

    2.小题热身

    (1)ab为满足ab<0的实数,那么(  )

    A.|ab|>|ab|  B|ab|<|ab|

    C.|ab|<||a||b||  D|ab|<|a||b|

    答案 B

    解析 ab<0|ab||a||b|>|ab|.

    (2)若不等式|kx4|2的解集为{x|1x3},则实数k________.

    答案 2

    解析 |kx4|22kx6.不等式的解集为{x|1x3}k2.

    (3)函数y|x3||x3|的最小值为________

    答案 6

    解析 因为|x3||x3||(x3)(x3)|6,当-3x3时,|x3||x3|6,所以函数y|x3||x3|的最小值为6.

    (4)不等式|x1||x5|<2的解集是________

    答案 (4)

    解析 |x1||x5|表示数轴上对应的点x15的距离之差.而数轴上满足|x1||x5|2的点的数是4,结合数轴可知,满足|x1||x5|<2的解集是(4).

     

     

    对应学生用书P213

    题型 一 解绝对值不等式

    1.(2019·全国卷)已知f(x)|xa|x|x2|·(xa)

    (1)a1时,求不等式f(x)<0的解集;

    (2)x(1)时,f(x)<0,求a的取值范围.

    解 (1)a1时,f(x)|x1|x|x2|(x1)

    x<1时,f(x)=-2(x1)2<0

    x1时,f(x)0.

    所以,不等式f(x)<0的解集为(1)

    (2)因为f(a)0,所以a1.

    a1x(1)时,f(x)(ax)x(2x)·(xa)2(ax)(x1)<0.所以,a的取值范围是[1,+).

    2.设函数f(x)|2x1||x4|.

    (1)解不等式f(x)>2

    (2)求函数yf(x)的最小值.

    解 (1)解法一:令2x10x40分别得

    x=-x4.原不等式可化为:

    原不等式的解集为x.

    解法二:f(x)|2x1||x4|

    画出f(x)的图象,如图所示.

    求得y2f(x)图象的交点为(7,2)2.

    由图象知f(x)>2的解集为x.

    (2)(1)的解法二知,f(x)min=-.

    |xa||xb|c|xa||xb|c的方法

    (1)零点分段法

    令每个含绝对值符号的代数式为零,并求出相应的根;

    将这些根按从小到大排序并以这些根为端点把实数集分为若干个区间;

    由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出解集;

    取各个不等式解集的并集求得原不等式的解集.

    (2)利用|xa||xb|的几何意义

    数轴上到点x1ax2b的距离之和大于c的全体,|xa||xb||xa(xb)||ab|.

    (3)图象法:作出函数y1|xa||xb|y2c的图象,结合图象求解.见举例说明2.

    提醒:易出现解集不全的错误.对于含绝对值的不等式,不论是分段去绝对值号还是利用几何意义,都要不重不漏.

    (2019·石家庄模拟)设函数f(x)|x1|.

    (1)求不等式f(x)5f(x3)的解集;

    (2)已知关于x的不等式2f(x)|xa|x4[11]上有解,求实数a的取值范围.

    解 (1)不等式f(x)5f(x3),即|x1||x2|5

    等价于

    解得-2x3.

    所以原不等式的解集为{x|2x3}

    (2)x[1,1]时,不等式2f(x)|xa|x4,即|xa|2x

    所以|xa|2x[1,1]上有解,

    即-2a22x[1,1]上有解,

    解得-2a4,所以实数a的取值范围为[2,4].

    题型 二 绝对值不等式性质的应用 

    角度1 用绝对值不等式的性质求最值

    1.(1)对任意xyR,求|x1||x||y1||y1|的最小值;

    (2)对于实数xy,若|x1|1|y2|1,求|x2y1|的最大值.

    解 (1)xyR

    |x1||x||(x1)x|1

    当且仅当0x1时等号成立,

    |y1||y1||(y1)(y1)|2

    当且仅当-1y1时等号成立,

    |x1||x||y1||y1|123

    当且仅当0x1,-1y1同时成立时等号成立,

    |x1||x||y1||y1|的最小值为3.

    (2)|x2y1||(x1)2(y1)||x1||2(y2)2|12|y2|25

    |x2y1|的最大值为5.

    角度2 用绝对值不等式的性质证明不等式

    2.a>0|x1|<|y2|<,求证:|2xy4|<a.

    证明 因为|x1|<|y2|<

    所以|2xy4||2(x1)(y2)|

    2|x1||y2|<2×a.

    |2xy4|<a.

    1.证明绝对值不等式的三种主要方法

    (1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.

    (2)利用三角不等式||a||b|||a±b||a||b|进行证明.

    (3)转化为函数问题,利用数形结合进行证明.

    2.用绝对值不等式的性质求最值的方法

    利用不等式|ab||a||b|(abR)|ab||ac||cb|(abR),通过确定适当的ab,利用整体思想或使函数、不等式中不含变量,可以求最值.

    1.已知xyR,且|xy||xy|,求证:|x5y|1.

    证明 |x5y||3(xy)2(xy)|

    由绝对值不等式的性质,得

    |x5y||3(xy)2(xy)|

    |3(xy)||2(xy)|

    3|xy|2|xy|

    3×2×1.

    |x5y|1.

    2.已知函数f(x)|x4||xa|(aR)的最小值为a.

    (1)求实数a的值;

    (2)解不等式f(x)5.

    解 (1)f(x)|x4||xa||a4|a

    解得a2.

    (2)(1)知,f(x)|x4||x2|

    故当x2时,由-2x65,得x2

    2<x4时,显然不等式成立,

    x>4时,由2x65,得4<x

    故不等式f(x)5的解集为xx.

    题型 三 与绝对值不等式有关的参数范围问题 

    (2018·全国卷)已知f(x)|x1||ax1|.

    (1)a1时,求不等式f(x)>1的解集;

    (2)x(0,1)时不等式f(x)>x成立,求a的取值范围.

    解 (1)a1时,f(x)|x1||x1|

    f(x)

    故不等式f(x)>1的解集为x>.

    (2)x(0,1)|x1||ax1|>x成立等价于当x(0,1)|ax1|<1成立.

    a0,则当x(0,1)时,|ax1|1,不符合题意;

    a>0|ax1|<1的解集为0<x<,所以1,故0<a2.综上,a的取值范围为(0,2].

    条件探究 将本例中的函数改为f(x)|2x1||xa|,若x(1,0)时,f(x)>1有解,求a的取值范围.

    解 x(1,0)时,f(x)>1有解|xa|<2x有解2x<xa<2x有解3x<a<x有解,

    3x>3,-x<13<a<1,即实数a的取值范围是(3,1).

    两招解不等式问题中的含参问题

    (1)第一招是转化.把存在性问题转化为求最值问题;不等式的解集为R是指不等式的恒成立问题;不等式的解集为的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立a>f(x)maxf(x)>a恒成立a<f(x)min.

    (2)第二招是求最值.求含绝对值的函数最值时,常用的方法有三种:利用绝对值的几何意义;利用绝对值三角不等式,即|a||b||a±b|||a||b||利用零点分区间法.

    (2019·安徽省江南十校联考)设函数f(x)lg (|2x1|2|x1|a)

    (1)a4时,求函数f(x)的定义域;

    (2)若函数f(x)的定义域为R,求实数a的取值范围.

    解 (1)a4时,f(x)lg (|2x1|2|x1|4),此时x应满足|2x1|2|x1|>4.

    x1时,12x2x2>4,解得x<

    当-1<x<时,12x2x2>4,无解;

    x时,2x12x2>4,解得x>.

    综上所述,函数f(x)的定义域为

    xx<x>.

    (2)函数f(x)的定义域为R

    |2x1|2|x1|a>0R上恒成立,

    a<(|2x1|2|x1|)min.

    因为|2x1|2|x1||2x1||2x2||(2x1)(2x2)|3

    所以a<3,即实数a的取值范围为(3).

     

     

    对应学生用书P297

                        

     组 基础关

    1.(2019·衡水模拟)已知函数f(x)|x2|.

    (1)求不等式f(x1)<xf(x3)的解集;

    (2)若函数g(x)log2[f(x3)f(x)2a]的值域为R,求实数a的取值范围.

    解 (1)由已知不等式,得|x1|<x|x1|.

    考虑到x>0,不等式又可化为

    解得1<x1x>1.

    所以不等式f(x1)<xf(x3)的解集为(1,+)

    (2)h(x)f(x3)f(x)2a

    h(x)|x2||x1|2a.

    因为|x2||x1|2a32a当且仅当x[1,2]时取等号,所以h(x)min32a.

    因为函数g(x)log2[f(x3)f(x)2a]的值域为R

    所以f(x3)f(x)2a0有解,即|x2||x1|2a.

    因为|x2||x1|3,所以2a3,即a.所以实数a的取值范围是,+.

    2.(2019·湖北四地七校模拟)已知函数f(x)|2x1||2xa|g(x)x3.

    (1)a2时,求不等式f(x)g(x)的解集;

    (2)a>-1,且当x时,f(x)g(x),求实数a的取值范围.

    解 (1)a2时,不等式f(x)g(x)可化为

    |2x1||2x2|x30

    设函数y|2x1||2x2|x3

    yy0,得0x

    原不等式的解集是x.

    (2)x时,f(x)1a,不等式f(x)g(x)可化为1ax3

    xa2x都成立,故-a2,即a

    实数a的取值范围为.

    3.(2018·全国卷)设函数f(x)|2x1||x1|.

    (1)画出yf(x)的图象;

    (2)x[0,+)f(x)axb,求ab的最小值.

    解 (1)f(x)

    yf(x)的图象如图所示.

    (2)(1)知,yf(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a3b2时,f(x)axbx[0,+)上成立,因此ab的最小值为5.

    4.(2019·潍坊模拟)设函数f(x)|xa|x(a>0)

    (1)求证:f(x)4

    (2)若不等式f(x)x4x的解集为{x|x2},求实数a的值.

    解 (1)证明:f(x)|xa|x

    xax

    a24,当且仅当a2时取等号.

    (2)解法一:由f(x)x4x,得

    |xa|4x(a>0)

    xa时,xa4x,解得x

    这与xa>0相矛盾,故不成立.

    x<a时,ax4x,解得x.

    又不等式的解集是{x|x2}

    2,解得a10.

    解法二:由f(x)x4x,得

    |xa|4x(a>0)

    不等式|xa|4x(a>0)的解集为{x|x2}

    x2是方程|xa|4x的解,

    |2a|4×2

    解得a10a=-6.

    a>0a10.

     组 能力关

    1.(2019·华中师范大学第一附中模拟)已知函数f(x)|xa||x2|.

    (1)a1时,求不等式f(x)7的解集;

    (2)f(x)|x4||x2a|的解集包含[0,2],求实数a的取值范围.

    解 (1)a1时,f(x)

    x1时,由f(x)7得-2x17,解得x3

    当-1<x<2时,f(x)7无解;

    x2时,由f(x)72x17,解得x4.

    所以f(x)7的解集为(,-3][4,+)

    (2)f(x)|x4||x2a|的解集包含[0,2]

    |xa||x2a||x4||x2|[0,2]上恒成立.

    所以当x[0,2]时,|xa||x2a||x4||x2|2

    (|xa||x2a|)max2恒成立.

    |xa||x2a||(xa)(x2a)||a|

    所以|a|2,故-2a2.

    所以实数a的取值范围是[2,2].

    2.已知函数f(x)|2xa||2x3|g(x)|x1|2.

    (1)解不等式:|g(x)|<5

    (2)若对任意的x1R,都有x2R,使得f(x1)g(x2)成立,求实数a的取值范围.

    解 (1)||x1|2|<5,得-5<|x1|2<5

    所以-7<|x1|<3,解不等式得-2<x<4

    所以原不等式的解集是{x|2<x<4}

    (2)因为对任意的x1R,都有x2R,使得f(x1)g(x2)成立,所以{y|yf(x)}{y|yg(x)},又f(x)|2xa||2x3||(2xa)(2x3)||a3|g(x)|x1|22,所以|a3|2,解得a1a5,所以实数a的取值范围是{a|a1a5}.

    3.(2019·安徽师大附中、马鞍山二中阶段测试)已知函数f(x)|x2|.

    (1)解不等式:f(x)f(x1)2

    (2)a<0,求证:f(ax)af(x)f(2a)

    解 (1)由题意,得f(x)f(x1)|x1||x2|.

    因此只要解不等式|x1||x2|2.

    x1时,原不等式等价于-2x32

    解得x1

    1<x2时,原不等式等价于12,解得1<x2

    x>2时,原不等式等价于2x32,解得2<x.

    综上,原不等式的解集为xx.

    (2)证明:由题意得f(ax)af(x)|ax2|a|x2||ax2||2aax||ax22aax||2a2|f(2a)

    所以f(ax)af(x)f(2a)成立.

    4.(2019·武汉模拟)已知函数f(x)|2x1||x1|.

    (1)求不等式f(x)3的解集;

    (2)若直线yxayf(x)的图象所围成的多边形面积为,求实数a的值.

    解 (1)由题意,得f(x)

    x1时,由f(x)33x3,解得x1

    当-<x<1时,由f(x)3x23,解得x1

    这与-<x<1矛盾,故舍去;

    x时,由f(x)3得-3x3,解得x1.

    综上可知,不等式f(x)3的解集为

    {x|x1x1}

    (2)画出函数yf(x)的图象,

    如图所示,其中AB(1,3)

    kAB1

    直线yxa与直线AB平行.

    若要围成多边形,则a>2.

    易得直线yxayf(x)的图象交于两点

    CD

    |CD|·a

    平行线ABCD间的距离

    d|AB|

    梯形ABCD的面积

    S··(a2)

    (a>2)

    (a2)(a2)12a4.

    故所求实数a的值为4.

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021届山东高考数学一轮创新教学案:第12章 第3讲 绝对值不等式
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map