终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021版高考文科数学(人教A版)一轮复习教师用书:第六章 第3讲 等比数列及其前n项和

    立即下载
    加入资料篮
    2021版高考文科数学(人教A版)一轮复习教师用书:第六章 第3讲 等比数列及其前n项和第1页
    2021版高考文科数学(人教A版)一轮复习教师用书:第六章 第3讲 等比数列及其前n项和第2页
    2021版高考文科数学(人教A版)一轮复习教师用书:第六章 第3讲 等比数列及其前n项和第3页
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021版高考文科数学(人教A版)一轮复习教师用书:第六章 第3讲 等比数列及其前n项和

    展开

    第3讲 等比数列及其前n项和



    一、知识梳理
    1.等比数列的有关概念
    (1)定义:
    ①文字语言:一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(非零).
    ②符号语言:=q(n∈N*,q为非零常数).
    (2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即G2=ab.
    2.等比数列的有关公式
    (1)通项公式:an=a1qn-1.
    (2)前n项和公式:Sn=
    3.等比数列的性质
    已知数列{an}是等比数列,Sn是其前n项和.(m,n,p,q,r,k∈N*)
    (1)若m+n=p+q=2r,则am·an=ap·aq=a;
    (2)数列am,am+k,am+2k,am+3k,…仍是等比数列;
    (3)数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时{an}的公比q≠-1).
    常用结论
    1.等比数列的单调性
    当q>1,a1>0或0<q<1,a1<0时,{an}是递增数列;
    当q>1,a1<0或0<q<1,a1>0时,{an}是递减数列;
    当q=1时,{an}是常数列.
    2.等比数列与指数函数的关系
    当q≠1时,an=·qn,可以看成函数y=cqx,是一个不为0的常数与指数函数的乘积,因此数列{an}各项所对应的点都在函数y=cqx的图象上.
    3.等比数列{an}的前n项和Sn=A+B·Cn⇔A+B=0,公比q=C(A,B,C均不为零)
    二、习题改编
    1.(必修5P53练习T3改编)对任意等比数列{an},下列说法一定正确的是(  )
    A.a1,a3,a9成等比数列 B.a2,a3,a6成等比数列
    C.a2,a4,a8成等比数列 D.a3,a6,a9成等比数列
    解析:选D.设等比数列的公比为q,则a3=a1q2,a6=a1q5,a9=a1q8,满足(a1q5)2=a1q2·a1q8,
    即a=a3·a9.
    2.(必修5P53习题T1改编)已知等比数列{an}的前n项和为Sn,且a1+a3=,a2+a4=,则q= .
    答案:2
    3.(必修5P54A组T8改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为 .
    解析:设该数列的公比为q,由题意知,
    243=9×q3,得q3=27,所以q=3.
    所以插入的两个数分别为9×3=27,27×3=81.
    答案:27,81

    一、思考辨析
    判断正误(正确的打“√”,错误的打“×”)
    (1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.(  )
    (2)三个数a,b,c成等比数列的充要条件是b2=ac.(  )
    (3)满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列.(  )
    (4)如果{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数列.(  )
    (5)等比数列中不存在数值为0的项.(  )
    答案:(1)× (2)× (3)× (4)× (5)√
    二、易错纠偏
    (1)运用等比数列的前n项和公式时,忽略q=1的情况;
    (2)“G2=ab”是“a,G,b成等比数列”的必要不充分条件;
    (3)对等比数列项的符号不能作出正确判断.
    1.已知在等比数列{an}中,a3=7,前三项之和S3=21,则公比q的值是(  )
    A.1           B.-
    C.1或- D.-1或
    解析:选C.当q=1时,an=7,S3=21,符合题意;当q≠1时,得q=-.综上,q的值是1或-,故选C.
    2.在等比数列{an}中,a3=2,a7=8,则a5= .
    解析:因数列{an}为等比数列,则a=a3a7=16,又a3>0,所以a5=4.
    答案:4
    3.在等比数列{an}中,a2=4,a10=16,则a2和a10的等比中项为 .
    解析:设a2与a10的等比中项为G,因为a2=4,a10=16,所以G2=4×16=64,所以G=±8.
    答案:±8


          等比数列的基本运算(师生共研)
    (1)(一题多解)(2019·高考全国卷Ⅰ)记Sn为等比数列{an}的前n项和.若a1=1,S3=,则S4= .
    (2)已知{an}是各项均为正数的等比数列,a1=2,a3=2a2+16.则an= .
    【解析】 (1)通解:设等比数列{an}的公比为q,由a1=1及S3=,易知q≠1.把a1=1代入S3==,得1+q+q2=,解得q=-,所以S4===.
    优解一:设等比数列{an}的公比为q,因为S3=a1+a2+a3=a1(1+q+q2)=,a1=1,所以1+q+q2=,解得q=-,所以a4=a1·q3==-,所以S4=S3+a4=+=.
    优解二:设等比数列{an}的公比为q,由题意易知q≠1.设数列{an}的前n项和Sn=A(1-qn)(其中A为常数),则a1=S1=A(1-q)=1 ①,S3=A(1-q3)= ②,由①②可得A=,q=-.所以S4=×=.
    (2)设{an}的公比为q,由题设得
    2q2=4q+16,即q2-2q-8=0.
    解得q=-2(舍去)或q=4.
    因此{an}的通项公式为an=2×4n-1=22n-1.
    【答案】 (1) (2)22n-1

    解决等比数列有关问题的常见数学思想
    (1)方程思想:等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)求关键量a1和q,问题可迎刃而解.
    (2)分类讨论思想:因为等比数列的前n项和公式涉及对公比q的分类讨论,所以当某一参数为公比进行求和时,就要对参数是否为1进行分类讨论.
    (3)整体思想:应用等比数列前n项和公式时,常把qn或当成整体进行求解.

    1.(一题多解)(2020·福州市质量检测)等比数列{an}的各项均为正实数,其前n项和为Sn.若a3=4,a2a6=64,则S5=(  )
    A.32           B.31
    C.64 D.63
    解析:选B.通解:设首项为a1,公比为q,因为an>0,所以q>0,由条件得解得所以S5=31,故选B.
    优解:设首项为a1,公比为q,因为an>0,所以q>0,由a2a6=a=64,a3=4,得q=2,a1=1,所以S5=31,故选B.
    2.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=(  )
    A.16 B.8
    C.4 D.2
    解析:选C.设等比数列{an}的公比为q(q>0),由a5=3a3+4a1,得a1q4=3a1q2+4a1,得q4-3q2-4=0,令q2=t,则t2-3t-4=0,解得t=4或t=-1(舍去),所以q2=4,即q=2或q=-2(舍去).又S4==15,所以a1=1,所以a3=a1q2=4.故选C.
    3.设等比数列{an}的前n项和为Sn,且满足a6=8a3,则(  )
    A.数列{an}的公比为2 B.数列{an}的公比为8
    C.=8 D.=4
    解析:选A.因为等比数列{an}的前n项和为Sn,且满足a6=8a3,所以=q3=8,解得q=2,所以==1+q3=9.

          等比数列的判定与证明(典例迁移)
    (1)已知数列{an}是等比数列,则下列命题不正确的是(  )
    A.数列{|an|}是等比数列
    B.数列{anan+1}是等比数列
    C.数列是等比数列
    D.数列{lg a}是等比数列
    (2)已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2(n∈N*),若bn=an+1-2an,求证:{bn}是等比数列.
    【解】 (1)选D.因为数列{an}是等比数列,所以=q.对于A,==|q|,所以数列{|an|}是等比数列,A正确;对于B,=q2,所以数列{anan+1}是等比数列,B正确;对于C,==,所以数列是等比数列,C正确;对于D,==,不一定是常数,所以D错误.
    (2)证明:因为an+2=Sn+2-Sn+1=4an+1+2-4an-2=4an+1-4an,所以====2.
    因为S2=a1+a2=4a1+2,所以a2=5.
    所以b1=a2-2a1=3.
    所以数列{bn}是首项为3,公比为2的等比数列.
    【迁移探究1】 (变问法)若本例(2)中的条件不变,试求{an}的通项公式.
    解:由(2)知bn=an+1-2an=3·2n-1,
    所以-=,
    故是首项为,公差为的等差数列.
    所以=+(n-1)·=,
    所以an=(3n-1)·2n-2.
    【迁移探究2】 (变条件)在本例(2)中,若cn=,证明:数列{cn}为等比数列.
    证明:由[迁移探究1]知,an=(3n-1)·2n-2,所以cn=2n-2.
    所以==2,又c1==,
    所以数列{cn}是首项为,公比为2的等比数列.

    等比数列的判定方法
    (1)定义法:若=q(q为非零常数)或=q(q为非零常数且n≥2),则{an}是等比数列.
    (2)中项公式法:若数列{an}中an≠0且a=an·an+2(n∈N*),则数列{an}是等比数列.
    (3)通项公式法:若数列的通项公式可写成an=c·qn-1(c,q均为不为0的常数,n∈N*),则{an}是等比数列.
    (4)前n项和公式法:若数列{an}的前n项和Sn=k·qn-k(k为常数且k≠0,q≠0,1),则{an}是等比数列.
    [提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.
    (2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.

    1.(一题多解)已知等比数列{an}的前n项和为Sn=a·2n-1+,则a的值为(  )
    A.- B.
    C.- D.
    解析:选A.法一:当n≥2时,an=Sn-Sn-1=a·2n-1-a·2n-2=a·2n-2,当n=1时,a1=S1=a+,所以a+=,所以a=-.
    法二:因为等比数列的前n项和Sn=k×qn-k,则a=-,a=-.
    2.(2019·高考全国卷Ⅱ节选)已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
    证明:{an+bn}是等比数列,{an-bn}是等差数列.
    证明:由题设得4(an+1+bn+1)=2(an+bn),即an+1+bn+1=(an+bn).
    又因为a1+b1=1,所以{an+bn}是首项为1,公比为的等比数列.
    由题设得4(an+1-bn+1)=4(an-bn)+8,即an+1-bn+1=an-bn+2.
    又因为a1-b1=1,所以{an-bn}是首项为1,公差为2的等差数列.

          等比数列的性质及应用(多维探究)
    角度一 等比数列项的性质的应用
    (1)(2020·洛阳市第一次联考)在等比数列{an}中,a3,a15是方程x2+6x+2=0的两根,则的值为(  )
    A.- B.-
    C. D.-或
    (2)等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5= .
    【解析】 (1)设等比数列{an}的公比为q,因为a3,a15是方程x2+6x+2=0的两根,所以a3·a15=a=2,a3+a15=-6,所以a3<0,a15<0,则a9=-,所以==a9=-.
    (2)由题意知a1a5=a=4,因为数列{an}的各项均为正数,所以a3=2.所以a1a2a3a4a5=(a1a5)·(a2a4)·a3=(a)2·a3=a=25.所以log2a1+log2a2+log2a3+log2a4+log2a5=log2(a1a2a3a4a5)=log225=5.
    【答案】 (1)B (2)5
    角度二 等比数列前n项和的性质的应用
    (1)已知等比数列{an}共有2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q= .
    (2)设等比数列{an}的前n项和为Sn,若=,则= .
    【解析】 (1)由题意,得解得所以q===2.
    (2)设等比数列{an}的公比为q,因为=,所以{an}的公比q≠1.由÷=,得q3=-,所以==.
    【答案】 (1)2 (2)

    等比数列性质应用问题的解题突破口
    等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项公式的变形,三是前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.
    [提醒] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要对性质进行适当变形.此外,解题时注意“设而不求”的运用.

    1.已知等比数列{an}中,a4+a8=-2,则a6(a2+2a6+a10)的值为(  )
    A.4 B.6
    C.8 D.-9
    解析:选A.a6(a2+2a6+a10)=a6a2+2a+a6a10=a+2a4a8+a=(a4+a8)2,因为a4+a8=-2,所以a6(a2+2a6+a10)=4.
    2.在正项等比数列{an}中,已知a1a2a3=4,a4a5a6=12,an-1anan+1=324,则n等于(  )
    A.12 B.13
    C.14 D.15
    解析:选C.因为数列{an}是各项均为正数的等比数列,所以a1a2a3,a4a5a6,a7a8a9,a10a11a12,…也成等比数列.
    不妨令b1=a1a2a3,b2=a4a5a6,则公比q===3.
    所以bm=4×3m-1.
    令bm=324,即4×3m-1=324,解得m=5,
    所以b5=324,即a13a14a15=324.
    所以n=14.
    3.在等比数列{an}中,若a7+a8+a9+a10=,a8a9=-,则+++= .
    解析:因为+=,+=,
    由等比数列的性质知a7a10=a8a9,
    所以+++=
    =÷=-.
    答案:-

    思想方法系列11 分类讨论思想求解数列问题
    (2020·武汉市调研测试)已知正项等比数列{an}的前n项和为Sn,满足a1=1,a3-4a1=0.
    (1)求Sn;
    (2)令bn=an-15,求T=|b1|+|b2|+…+|b10|的值.
    【解】 (1){an}是正项等比数列,由a3-4a1=0,所以a1q2-4a1=0
    所以q=2,则an的前n项和Sn==2n-1.
    (2)由(1)知an=2n-1,
    当n≥5时,bn=2n-1-15>0,n≤4时,bn=2n-1-15<0,
    所以T=-(b1+b2+b3+b4)+(b5+b6+…+b10)
    =-(a1+a2+a3+a4-15×4)+(a5+a6+…+a10-15×6)
    =-S4+S10-S4+60-90
    =S10-2S4-30
    =(210-1)-2×(24-1)-30
    =210-25-29
    =1 024-32-29
    =963.

    分类讨论思想在数列中应用较多,常见的分类讨论有:
    (1)已知Sn与an的关系,要分n=1,n≥2两种情况.
    (2)等比数列中遇到求和问题要分公比q=1,q≠1讨论.
    (3)项数的奇、偶数讨论.
    (4)等比数列的单调性的判断注意与a1,q的取值的讨论.

    1.(2020·福建厦门模拟)设等比数列{an}的前n项和为Sn,若Sn=2n+1+λ,则λ=(  )
    A.-2          B.-1
    C.1 D.2
    解析:选A.法一:当n=1时,a1=S1=4+λ.
    当n≥2时,an=Sn-Sn-1=(2n+1+λ)-(2n+λ)=2n,此时==2.
    因为{an}是等比数列,所以=2,
    即=2,解得λ=-2.故选A.
    法二:依题意,a1=S1=4+λ,a2=S2-S1=4,a3=S3-S2=8,
    因为{an}是等比数列,所以a=a1·a3,所以8(4+λ)=42,解得λ=-2.故选A.
    2.已知等比数列{an}中a2=1,则其前3项的和S3的取值范围是(  )
    A.(-∞,-1]
    B.(-∞,0)∪[1,+∞)
    C.[3,+∞)
    D.(-∞,-1]∪[3,+∞)
    解析:选D.设等比数列{an}的公比为q,
    则S3=a1+a2+a3=a2=1+q+.
    当公比q>0时,S3=1+q+≥1+2=3,当且仅当q=1时,等号成立;
    当公比q

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map