年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2019届高三理科数学二轮复习配套教案:第一篇专题六第2讲 直线与圆锥曲线的位置关系

    立即下载
    加入资料篮
    2019届高三理科数学二轮复习配套教案:第一篇专题六第2讲 直线与圆锥曲线的位置关系第1页
    2019届高三理科数学二轮复习配套教案:第一篇专题六第2讲 直线与圆锥曲线的位置关系第2页
    2019届高三理科数学二轮复习配套教案:第一篇专题六第2讲 直线与圆锥曲线的位置关系第3页
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019届高三理科数学二轮复习配套教案:第一篇专题六第2讲 直线与圆锥曲线的位置关系

    展开

    2讲 直线与圆锥曲线的位置关系(对应学生用书第44)                      1.(2018·全国,8)设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,·等于( D )(A)5 (B)6 (C)7 (D)8解析:由题意知直线MN的方程为y=(x+2),联立直线与抛物线的方程,解得不妨设M(1,2),N(4,4).又因为抛物线焦点为F(1,0),所以=(0,2),=(3,4).所以·=0×3+2×4=8.故选D.2.(2018·全国,11)已知双曲线C:-y2=1,O为坐标原点,FC的右焦点,F的直线与C的两条渐近线的交点分别为M,N.OMN为直角三角形,|MN|等于( B )(A) (B)3 (C)2 (D)4解析:由已知得双曲线的两条渐近线方程为y=±x.设两条渐近线夹角为2α,则有tan α==,所以α=30°.所以MON=2α=60°.OMN为直角三角形,由于双曲线具有对称性,不妨设MNON,如图所示.RtONF,|OF|=2,|ON|=.则在RtOMN,|MN|=|ON|·tan 2α=·tan 60°=3.故选B.3.(2017·全国,10)已知F为抛物线C:y2=4x的焦点,F作两条互相垂直的直线l1,l2,直线l1C交于A,B两点,直线l2C交于D,E两点,|AB|+|DE|的最小值为( A )(A)16 (B)14 (C)12 (D)10解析:y2=4x的焦点F(1,0),由题意知l1,l2的斜率都存在且不为0,设直线l1方程为y=k(x-1)(k≠0),则直线l2方程为y=-(x-1).A(x1,y1),B(x2,y2),D(x3,y3),E(x4,y4).y=k(x-1)代入y2=4xk2x2-(2k2+4)x+k2=0.所以x1+x2=2+,同理可得x3+x4=2+4k2,所以|AB|+|DE|=x1+x2+x3+x4+4=4+4++4k2≥8+2=16.(当且仅当k=±1时取等号).故选A.4.(2018·全国,16)已知点M(-1,1)和抛物线C:y2=4x,C的焦点且斜率为k的直线与C交于A,B两点.AMB=90°,k=    . 解析:法一 设点A(x1,y1),B(x2,y2),所以-=4(x1-x2),所以k==.AB的中点M'(x0,y0),抛物线的焦点为F,分别过点A,B作准线x=-1的垂线,垂足为A',B',|MM'|=|AB|=(|AF|+|BF|)=(|AA'|+|BB'|).因为M'(x0,y0)AB中点,所以MA'B'的中点,所以MM'平行于x,所以y1+y2=2,所以k=2.法二 由题意知,抛物线的焦点坐标为F(1,0),设直线方程为y=k(x-1),直线方程与y2=4x联立,消去y,k2x2-(2k2+4)x+k2=0.A(x1,y1),B(x2,y2),x1x2=1,x1+x2=.M(-1,1),=(-1-x1,1-y1),=(-1-x2,1-y2).AMB=90°,·=0,所以(x1+1)(x2+1)+(y1-1)(y2-1)=0,所以x1x2+(x1+x2)+1+y1y2-(y1+y2)+1=0.y1y2=k(x1-1)·k(x2-1)=k2[x1x2-(x1+x2)+1],y1+y2=k(x1+x2-2),所以1++1+k21-+1-k-2+1=0,整理得-+1=0,解得k=2.经检验k=2是分式方程的根.答案:25.(2017·全国,16)已知F是抛物线C:y2=8x的焦点,MC上一点,FM的延长线交y轴于点N.MFN的中点,|FN|=      . 解析:y2=8x可得F(2,0),FM的斜率一定存在,设为k,则直线FM的方程为y=k(x-2),x=0可得N(0,-2k),MFN中点,所以M(1,-k),代入y2=8xk2=8,所以|FN|====6.答案:66.(2018·全国,20)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-;(2)FC的右焦点,PC上一点,++=0.证明:||,||,||成等差数列,并求该数列的公差.证明:(1)A(x1,y1),B(x2,y2),+=1,+=1.两式相减,并由=k+·k=0.由题设知=1,=m,于是k=-.由题设得0<m<,k<-.(2)由题意得F(1,0).P(x3,y3),(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).(1)及题设得x3=3-(x1+x2)=1.y3=-(y1+y2)=-2m<0.又点PC,所以m=,从而P1,-,||=,于是||===2-.同理||=2-.所以||+||=4-(x1+x2)=3.2||=||+||,||,||,||成等差数列.设该数列的公差为d,2|d|=|||-|||=|x1-x2|=m=代入k=-1,所以l的方程为y=-x+,代入C的方程,并整理得7x2-14x+=0.x1+x2=2,x1x2=,代入解得|d|=.所以该数列的公差为-.1.考查角度主要考查直线与圆锥曲线的位置关系、弦长、面积及轨迹问题.2.题型及难易度选择题、解答题,难度为中档、中档偏上.(对应学生用书第44~47)                      直线与圆锥曲线的位置关系的判断【例1(2018·全国)设抛物线C:y2=4x的焦点为F,F且斜率为k(k>0)的直线lC交于A,B两点,|AB|=8.(1)l的方程;(2)求过点A,B且与C的准线相切的圆的方程.:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).A(x1,y1),B(x2,y2),k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去)k=1.因此l的方程为y=x-1.(2)(1)AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),y=-x+5.设所求圆的圆心坐标为(x0,y0),解得因此所求圆的方程为(x-3)2+(y-2)2=16(x-11)2+(y+6)2=144. 判断直线与圆锥曲线的位置关系有两种常用方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x,y的方程组,消去y(x)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数.热点训练1:(2018·淮北一模)已知椭圆C:+=1(a>b>0),其左右焦点为F1,F2,F1的直线l:x+my+=0与椭圆C交于A,B两点,且椭圆离心率e=.(1)求椭圆C的方程;(2)若椭圆上存在点M,使得2=+,求直线l的方程.:(1)直线l:x+my+=0过点F1,y=0,解得x=-,所以c=,因为e==,所以a=2,所以b2=a2-c2=4-3=1,所以椭圆C的方程为+y2=1.(2)A(x1,y1),B(x2,y2),M(x3,y3),2=+,x3=x1+x2,y3=y1+y2代入椭圆方程可得x1+x22+y1+y22-1=0,所以++++(x1x2+4y1y2)=1,所以x1x2+4y1y2=0,联立方程消去x可得(m2+4)y2+2my-1=0,所以y1+y2=,y1y2=,所以x1x2+4y1y2=(my1+)(my2+)+4y1y2=(m2+4)y1y2+m(y1+y2)+3=0,m2=2,解得m=±,所求直线l的方程为y+=0.圆锥曲线的弦长问题【例2(2018·合肥市二次质检)已知椭圆E:+=1(a>b>0)经过点P-,,椭圆E的一个焦点为(,0).(1)求椭圆E的方程;(2)若直线l过点M(0,)且与椭圆E交于A,B两点,|AB| 的最大值.:(1)依题意,椭圆E的左、右焦点分别为F1(-,0),F2(,0),由椭圆E经过点P-,,|PF1|+|PF2|=4=2a,所以a=2,c=,所以b2=a2-c2=1.所以椭圆E的方程为+y2=1.(2)当直线l的斜率存在时,设直线l的方程为y=kx+,A(x1,y1),B(x2,y2).(1+4k2)x2+8kx+4=0.Δ>0(8k)2-4(1+4k2)×4>0,所以4k2>1.x1+x2=-,x1x2=|AB|=·=2.t=,0<t<,所以|AB|=2=2,当且仅当t=时等号成立,当直线l的斜率不存在时,|AB|=2<,综上,|AB|的最大值为. (1)涉及圆锥曲线的弦长问题的求解步骤:设方程(注意斜率k是否存在)及点的坐标;联立直线方程与曲线方程得方程组,消元得方程(注意二次项系数是否为零);利用根与系数的关系,设而不求计算弦长,涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解;(2)弦长计算公式:设斜率为k(k≠0)的直线l与曲线C的两个交点为P(x1,y1),Q(x2,y2),|PQ|==|x1-x2|=·=|y1-y2|=·.热点训练2:(2018·东城区二模)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)OAOB,AOB面积的最小值.:(1)由抛物线C:y2=2px经过点P(2,2)4p=4,解得p=1.则抛物线C的方程为y2=2x,所以抛物线C的焦点坐标为,0,准线方程为x=-.(2)由题知,直线AB不与y轴垂直,设直线AB:x=ty+a,消去x,y2-2ty-2a=0,A(x1,y1),B(x2,y2),y1+y2=2t,y1y2=-2a,因为OAOB,所以x1x2+y1y2=0,+y1y2=0,解得y1y2=0()y1y2=-4,所以-2a=-4,解得a=2.所以直线AB:x=ty+2,所以直线AB过定点(2,0),SAOB=×2×|y1-y2|===4.当且仅当y1=2,y2=-2y1=-2,y2=2,等号成立.所以AOB面积的最小值为4.中点弦问题【例3求一个焦点是F(0,5),并截直线y=2x-1所得弦的中点的横坐标是的椭圆的标准方程.:法一 (设而不求)设所求的椭圆方程为+=1(a>b>0),直线被椭圆所截弦的端点为A(x1,y1),B(x2,y2),y(4b2+a2)x2-4b2x+b2-a2b2=0,所以x1+x2=,因为c=5,所以b2=a2-c2=a2-50,所以x1+x2=,由题意知=,x1+x2=,所以=,解得a2=75,所以b2=25,方程175x2-100x-1 850=0,7x2-4x-74=0,此时Δ>0,故所求椭圆的标准方程为+=1.法二 (点差法)设所求的椭圆方程为+=1(a>b>0),直线被椭圆所截弦的端点为A(x1,y1),B(x2,y2).由题意,可得弦AB的中点坐标为,,=,=-.A,B两点坐标代入椭圆方程中,两式相减并化简,=-×=-2×=3,所以a2=3b2.c2=a2-b2=50,所以a2=75,b2=25.所以椭圆方程为+=1,y=2x-1代入,化简得7x2-4x-74=0,此时Δ>0,故所求椭圆的标准方程为+=1. (1)对于弦的中点问题常用根与系数的关系点差法求解,在使用根与系数的关系时,要注意使用条件Δ>0,在用点差法,要检验直线与圆锥曲线是否相交.(2)圆锥曲线以P(x0,y0)(y0≠0)为中点的弦所在直线的斜率分别是k=-椭圆+=1,k=双曲线-=1,k=(抛物线y2=2px).其中k=(x1≠x2),(x1,y1),(x2,y2)为弦的端点坐标.热点训练3: 过点M(1,1)的直线与椭圆+=1交于A,B两点,且点M平分弦AB,则直线AB的方程为(  )(A)4x+3y-7=0 (B)3x+4y-7=0(C)3x-4y+1=0 (D)4x-3y-1=0解析:A(x1,y1),B(x2,y2).易得+=1,+=1,两式相减,整理得+=0.M(1,1)是弦AB的中点得x1+x2=2,y1+y2=2,所以有+=0,=-,即直线AB的斜率k=-,所以,直线AB的方程为y-1=-(x-1),3x+4y-7=0.故选B.求轨迹方程考向1 直接法【例4已知两点A(,0),B(-,0),P为平面内一动点,过点Py轴的垂线,垂足为Q,·=2,求动点P的轨迹方程.:设动点P的坐标为(x,y),则点Q的坐标为(0,y),所以=(-x,0),=(-x,-y),=(--x,-y),所以·=x2-2+y2.·=2,x2-2+y2=2x2,y2-x2=2.故动点P的轨迹方程为y2-x2=2.考向2 定义法求轨迹方程【例5(2018·郑州市二次质检)已知动圆E经过点F(1,0),且和直线x=-1相切.(1)求该动圆圆心E的轨迹G的方程;(2)已知A(3,0),若斜率为1的直线l与线段OA相交(不经过坐标原点O和点A),且与曲线G交于B,C两点,ABC面积的最大值.:(1)由题意可知点E到点F的距离等于点E到直线x=-1的距离,所以动点E的轨迹是以F(1,0)为焦点,直线x=-1为准线的抛物线,故轨迹G的方程是y2=4x.(2)由题意设直线l的方程为y=x+m,其中-3<m<0.联立,消去y,x2+(2m-4)x+m2=0,Δ=(2m-4)2-4m2=16(1-m)>0.B(x1,y1),C(x2,y2),x1+x2=4-2m,x1x2=m2,所以|BC|=4,又点A到直线l的距离d=,所以SABC=×4×=2·(3+m).=t,t(1,2),m=1-t2,所以SABC=2t(4-t2)=8t-2t3,f(t)=8t-2t3,f'(t)=8-6t2,易知f(t)1,上单调递增,,2上单调递减,所以当t(1,2),f(t)t=处取得最大值,最大值为.此时m=-,满足-3<m<0,所以ABC面积的最大值为.考向3 相关点法求轨迹方程【例6已知双曲线-y2=1的左、右顶点分别为A1,A2,P(x1,y1),Q(x1,-y1)是双曲线上两个不同的动点,求直线A1PA2Q交点的轨迹E的方程.:由题设知|x1|>,A1(-,0),A2(,0),则有直线A1P的方程为y=(x+),直线A2Q的方程为y=(x-).联立①②,解得x≠0,|x|<.而点P(x1,y1)在双曲线-y2=1,所以-=1.代入上式,整理得所求轨迹E的方程为+y2=1,x≠0x≠±. (1)若动点满足的几何条件可用等式表示,则只需把这个等式翻译成含x,y的等式,通过化简、整理可得到曲线的方程,这种求轨迹方程的方法叫直接法,也称坐标法.(2)若动点轨迹的条件满足圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义求出动点的轨迹方程,这种求轨迹方程的方法叫做定义法.利用定义法求轨迹方程时,要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量xy进行限制.(3)若动点P(x,y)所满足的条件不易表述或求出,但随另一动点Q(x',y')的运动而有规律地运动,且动点Q的轨迹方程给定或容易求得,则可先将x',y'表示为x,y的式子,再代入Q的轨迹方程,然后整理得点P的轨迹方程,这种求轨迹方程的方法叫做相关点法,也称代入法.热点训练4: (2018·西宁一模)在平面直角坐标系xOy,F1(-1,0),F2(1,0),动点M满足|-|+|-|=4.(1)求动点M的轨迹E的方程;(2)若直线y=kx+m与轨迹E有且仅有一个公共点Q,且与直线x=-4相交于点R,求证:QR为直径的圆过定点F1.(1):因为|-|+|-|=4,所以|MF1|+|MF2|=4,由椭圆定义可知动点M的轨迹是以F1,F2为焦点的椭圆,所以2a=4,a=2,因为c=1,所以b2=a2-c2=3,所以动点M的轨迹E的方程为+=1.(2)证明:(4k2+3)x2+8kmx+4m2-12=0,如图,设点Q的坐标为(x0,y0),依题意m≠0,Δ=(8km)2-4(4k2+3)(4m2-12)=0可得4k2+3=m2,此时x0=-=-,y0==,所以Q-,,解得y=-4k+m,所以R(-4,-4k+m),F1(-1,0),可得=-1,-,=(3,4k-m),所以·=3-1-(4k-m)=0,所以QF1RF1,所以以QR为直径的圆过定点F1. 热点训练5: 如图,从曲线x2-y2=1上一点Q引直线l:x+y=2的垂线,垂足为N,求线段QN的中点P的轨迹方程.:设点P的坐标为(x,y),曲线上点Q的坐标为(x0,y0).因为点P是线段QN的中点,所以点N的坐标为(2x-x0,2y-y0).又因为点N在直线x+y=2,所以2x-x0+2y-y0=2.因为QNl,所以kQN==1,x0-y0=x-y.①②,x0=(3x+y-2),y0=(x+3y-2).又因为点Q在曲线x2-y2=1,所以(3x+y-2)2-(x+3y-2)2=1.化简,x-2-y-2=.故线段QN的中点P的轨迹方程为x-2-y-2=.                      【例1(2018·宜宾模拟)在直角坐标系xOy,已知点F1(-1,0),F2(1,0),动点P满足:|-|+|-|=4.分别过点(-1,0),(1,0),作两条平行直线m,n,m,n与轨迹C的上半部分分别交于A,B两点,求四边形ABF2F1面积的最大值.:设点P(x,y),由点F1(-1,0),F2(1,0),动点P满足|-|+|-|=4,||+||=4,由椭圆定义可知动点P的轨迹是以点(1,0),(-1,0)为焦点,长轴长为4的椭圆,所以a=2,c=1,b=,其方程为+=1.设直线m:x=ty-1,它与轨迹C的另一个交点为D,设两条平行线间的距离为d,由椭圆的对称性知=(|AF1|+|BF2|)·d=(|AF1|+|DF1|)·d=|AD|d=,x=ty-1C联立,消去x,(3t2+4)y2-6ty-9=0,Δ>0,|AD|==·,又点F2(1,0)到直线m:x=ty-1的距离为d=,所以=,m=≥1,=,因为y=3m+[1,+∞)上单调递增,所以当m=1t=0,取得最大值3,所以四边形ABF2F1面积的最大值为3.【例2(2018·福建省质检)在平面直角坐标系xOy,F的坐标为0,,MF为直径的圆与x轴相切.(1)求点M的轨迹E的方程;(2)T是轨迹E上横坐标为2的点,OT的平行线lEA,B两点,ET处的切线于点N,求证:|NT|2=|NA|·|NB|.(1):法一 设点M的坐标为(x,y),因为F0,,所以MF的中点坐标为,.因为以MF为直径的圆与x轴相切,所以=.|MF|=,所以=,化简得x2=2y,所以点M的轨迹E的方程为x2=2y.法二 设以MF为直径的圆的圆心为点C,x轴的切点为D,连接CD,CDx,|MF|=2|CD|.作直线l':y=-,过点MMNl'于点H,x轴于点I,|CD|=,所以|MF|=|MI|+|OF|,|IH|=|OF|=,所以|MF|=|MH|,所以点M的轨迹是以F为焦点,l'为准线的抛物线,所以M的轨迹E的方程为x2=2y.(2)证明:因为T是轨迹E上横坐标为2的点,(1)T(2,2),所以直线OT的斜率为1.因为lOT,所以设直线l的方程为y=x+m,m≠0.y=x2,y'=x,E在点T处的切线斜率为2,所以E在点T处的切线方程为y=2x-2.所以N(m+2,2m+2),所以|NT|2=[(m+2)-2]2+[(2m+2)-2]2=5m2.消去yx2-2x-2m=0,Δ=4+8m>0,m>-m≠0.A(x1,y1),B(x2,y2),x1+x2=2,x1x2=-2m.因为点N,A,B在直线l,所以|NA|=|x1-(m+2)|,|NB|=|x2-(m+2)|,所以|NA|·|NB|=2|x1-(m+2)|·|x2-(m+2)|=2|x1x2-(m+2)(x1+x2)+(m+2)2|=2|-2m-2(m+2)+(m+2)2|=2m2,所以|NT|2=|NA|·|NB|.【例3(2018·唐山五校联考)在直角坐标系xOy,长为+1的线段的两端点C,D分别在x,y轴上滑动,=.记点P的轨迹为曲线E.(1)求曲线E的方程;(2)经过点(0,1)作直线l与曲线E相交于A,B两点,=+,当点M在曲线E上时,求直线l的方程.:(1)C(m,0),D(0,n),P(x,y).=,(x-m,y)=(-x,n-y),所以||=+1,m2+n2=(+1)2,所以(+1)2x2+y2=(+1)2,整理,得曲线E的方程为x2+=1.(2)A(x1,y1),B(x2,y2),=+,知点M的坐标为(x1+x2,y1+y2).易知直线l的斜率存在,设直线l的方程为y=kx+1,代入曲线E的方程,(k2+2)x2+2kx-1=0,x1+x2=-,所以y1+y2=k(x1+x2)+2=.由点M在曲线E,(x1+x2)2+=1,+=1,解得k2=2.此时直线l的方程为y=±x+1.【例4(2018·长沙、南昌部分学校联合模拟)已知抛物线y2=4x,如图,x轴上的点P作斜率分别为k1,k2的直线l1,l2,已知直线l1与抛物线在第一象限切于点A(x0,y0),直线l2与抛物线在第四象限分别交于两点B,C,PAB,PAC的面积分别为S1,S2,S1S2=13.(1)求点P的横坐标关于x0的表达式;(2)的值.:(1)y>0,y=2,所以A(x0,2).因为直线l1与抛物线切于点A,y'=,所以k1=,所以直线l1的方程为y-2=(x-x0),y=0,得点P的横坐标xP=-x0.(2)(1)P(-x0,0),易得k2<0,所以直线l2的方程为x=y-x0.B(x1,y1),C(x2,y2),联立直线l2与抛物线的方程,消去xy2-y+4x0=0,所以y1+y2=,y1y2=4x0.因为S1S2=13,所以|PB||PC|=13,所以y2=3y1,代入式得=,所以k2=-,k1=,所以=-.  

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map