2021高考数学大一轮复习考点规范练65坐标系与参数方程理新人教A版
展开考点规范练65 坐标系与参数方程 考点规范练A册第46页 基础巩固1.在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)求C和l的普通方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.解:(1)曲线C的普通方程为=1.当cosα≠0时,l的普通方程为y=tanα·x+2-tanα,当cosα=0时,l的普通方程为x=1.(2)将l的参数方程代入C的普通方程,整理得关于t的方程(1+3cos2α)t2+4(2cosα+sinα)t-8=0,①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.又由①得t1+t2=-,故2cosα+sinα=0,于是直线l的斜率k=tanα=-2.2.(2019云南曲靖沾益四中高三三模)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以该直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos2θ+4cos θ-ρ=0.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)求直线l被曲线C截得的弦长是多少?解:(1)将消去参数t,得直线l的普通方程为x-y-1=0.∵曲线C的极坐标方程为ρcos2θ+4cosθ-ρ=0,即ρ2cos2θ+4ρcosθ-ρ2=0,∴曲线C的直角坐标方程为y2=4x.(2)联立得x2-6x+1=0,Δ=36-4=32>0,设直线l与抛物线C交于点A(x1,y1),B(x2,y2),则x1+x2=6,x1x2=1,故直线l被曲线C截得的弦长为|AB|===8.3.(2019江苏,21B)在极坐标系中,已知两点A,B,直线l的方程为ρsin=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.解:(1)设极点为O.在△OAB中,A,B,由余弦定理,得AB=(2)因为直线l的方程为ρsinθ+=3,则直线l过点,倾斜角为又B,所以点B到直线l的距离为(3)×sin=2.4.在平面直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.解:(1)由x=ρcosθ,y=ρsinθ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2,由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以=2,故k=-或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以=2,故k=0或k=,经检验,当k=0时,l1与C2没有公共点;当k=时,l2与C2没有公共点.综上,所求C1的方程为y=-|x|+2.5.在平面直角坐标系xOy中,曲线C1的参数方程为 (t为参数).在以坐标原点O为极点,x轴正半轴为极轴建立的极坐标系中,曲线C2的极坐标方程为ρcos(1)把曲线C1的参数方程化为普通方程,C2的极坐标方程化为直角坐标方程;(2)若曲线C1,C2相交于A,B两点,AB的中点为P,过点P作曲线C2的垂线交曲线C1于E,F两点,求|PE|·|PF|的值.解:(1)消去参数可得C1:y2=4x,C2:x-y-1=0.(2)设A(x1,y1),B(x2,y2),且AB的中点为P(x0,y0),联立可得x2-6x+1=0.∴x1+x2=6,x1x2=1,∴AB中垂线的参数方程为(t为参数).①y2=4x.②将①代入②中,得t2+8t-16=0,∴t1·t2=-16.∴|PE|·|PF|=|t1·t2|=16.能力提升6.(2019全国Ⅰ,理22)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcos θ+sin θ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.解:(1)因为-1<1,且x2+=1,所以C的直角坐标方程为x2+=1(x≠-1).l的直角坐标方程为2x+y+11=0.(2)由(1)可设C的参数方程为(α为参数,-π<α<π).C上的点到l的距离为当α=-时,4cos+11取得最小值7,故C上的点到l距离的最小值为7.已知直线C1:(t为参数),圆C2:(θ为参数).(1)当α=时,求C1被C2截得的线段的长;(2)过坐标原点O作C1的垂线,垂足为A,当α变化时,求点A轨迹的参数方程,并指出它是什么曲线.解:(1)当α=时,C1的普通方程为y=(x-1),C2的普通方程为x2+y2=1.联立方程组解得C1与C2的交点坐标为(1,0)与故C1被C2截得的线段的长为=1.(2)将C1的参数方程代入C2的普通方程得t2+2tcosα=0,设直线C1与圆C2交于M,N两点,M,N两点对应的参数分别为t1,t2,则点A对应的参数t==-cosα,故点A的坐标为(sin2α,-cosαsinα).故当α变化时,点A轨迹的参数方程为(α为参数).因此,点A轨迹的普通方程为+y2=故点A的轨迹是以为圆心,半径为的圆.高考预测8.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acos θ(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|PA|·|PB|=|AB|2,求a的值.解:(1)∵ρsin2θ=acosθ(a>0),∴ρ2sin2θ=aρcosθ(a>0),即y2=ax(a>0).直线l的参数方程消去参数t,得普通方程为y=x-2.(2)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a>0)中,得t2-(a+8)t+4(a+8)=0,设A,B两点对应的参数分别为t1,t2,则t1+t2=(a+8),t1·t2=4(a+8).∵|PA|·|PB|=|AB|2,∴t1·t2=(t1-t2)2.∴(t1+t2)2=(t1-t2)2+4t1·t2=5t1·t2,即[(8+a)]2=20(8+a),解得a=2或a=-8(不合题意,应舍去),∴a的值为2.