终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    新疆生产建设兵团2020年中考数学真题试卷(含解析)

    立即下载
    加入资料篮
    新疆生产建设兵团2020年中考数学真题试卷(含解析)第1页
    新疆生产建设兵团2020年中考数学真题试卷(含解析)第2页
    新疆生产建设兵团2020年中考数学真题试卷(含解析)第3页
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新疆生产建设兵团2020年中考数学真题试卷(含解析)

    展开

    新疆生产建设兵团2020年中考数学真题试卷一、单项选择题(本大题共9小题,每小题5分,共45分.请按答题卷中的要求作答)1.下列各数中,是负数的为(  )A.-1     B.0    C.0.2     D.2.如图所示,该几何体的俯视图是(  )3.下列运算正确的是(  )A.x2·x3=x6    B.x6÷x3=x3   C.x3+x3=2x6    D.(-2x)3=-6x34.实数a,b在数轴上的位置如图所示,下列结论中正确的是(  )A.a>b     B.|a|>|b|   C.-a<b     D.a+b>05.下列一元二次方程中,有两个不相等实数根的是(  )A.  B.x2+2x+4=0   C.x2-x+2=0    D.x2-2x=06.不等式组的解集是(  )A.0<x≤2    B.0<x≤6    C.x>0    D.x≤27.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为(  )            8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是(  )9.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为(  )A.    B.5     C.4    D.10二、填空题(本大题共6小题,每小题5分,共30分)10.如图,若AB∥CD,∠A=110°,则∠1=_____°.
     11.分解因式:am2-an2=_____.12.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n200500800200012000成活的棵数m187446730179010836成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为_____.(精确到0.1)13.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a-3),则a的值为_____.14.如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为_____.15.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为____.三、解答题(本大题共8小题,共75分)16.计算:17.先化简,再求值:(x-2)2-4x(x-1)+(2x+1)(2x-1),其中x=-18.如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.
    (1)求证:AE=CF;
    (2)若BE=DE,求证:四边形EBFD为菱形.19.为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀85≤x≤100;良好75≤x<85;及格60≤x<75;不及格0≤x<60,并绘制成如图两幅统计图.

    根据以上信息,解答下列问题:
    (1)在抽取的学生中不及格人数所占的百分比是_____;
    (2)计算所抽取学生测试成绩的平均分;
    (3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.20.如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)21.某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.
    (1)A、B两款保温杯的销售单价各是多少元?
    (2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?22.如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC的垂线,交AC的延长线于点D.
    (1)求证:DP是⊙O的切线;
    (2)若AC=5,sin∠APC=,求AP的长.23.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.
    (1)求抛物线的解析式;
    (2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m.
    ①当△A′MN在△OAB内部时,求m的取值范围;
    ②是否存在点P,使SAMN=SOAB,若存在,求出满足条件m的值;若不存在,请说明理由. 
    【答案与部分解析】1.解:-1是负数; 0既不是正数也不是负数; 0.2是正数;是正数.故选:A.2.解从上面看是四个正方形,符合题意的是C.故选:C.3.解:选项错误.不符合题意;选项正确,符合题意;选项错误,不符合题意;D、选项错误,不符合题意;故选: B.4.解:A.a<b,故此选项错误;正确;C、-a>b,故此选项错误;D、a+b<0,故此选项错误;故选: B.5.解: A.此方程判别式,方程有两个相等的实数根,不符合题意;B.此方程判别式方程没有实数根,不符合题意;C.此方程判别式,方程没有实数根,不符合题意;D .此方程判别式,方程有两个不相等的实数根,符合题意;故选: D.6.解:解不等式①,得解不等②,得:x>0则不等式组的解集为0<x≤2,故选: A.7.解:分别用A、B、C、D表示正方形、正五边形、正六边形和圆,画树状图得共有12种等可能的结果,抽到卡片上印有的图案都是中心对称图形的有6种情况,∴抽到卡片上印有的图案都是中心对称图形的概率为故选:C.8.解:因为二次函数的图象开口向上,得出a>0,与y轴交点在y轴的正半轴,得出c>0,利用对称轴得出b<0,所以一次函数y=ax+b经过一、三、四象限,反比例函经过一、三象限,故选:D.9.解:过A作AH⊥BC于H 1∵D是A B的中点∴AD=BD,BC ∴DF=AH∵△DFE的面积为1,∴B∵AB=CE ∴AB=2 (负值舍去),∴AC=4,故选:A.10.∴∠2=∠A=110°又∵∠1+∠2=180°∴∠故答案为:70.11.解原式=( m-n),故答案为:a(m+n)(m-n )12.解根据表格数据可知:苹果树苗移植成活的频率近似值为0.9,所以估计这种苹果树苗移植成活的概率约为0.9.故答案为: 0.9 .13.解:∵OA=OB,分别以点A,B为圆心,以大于长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为( a,2a-3),∴a=2a-3,∴a=3.故答案为:3.14.解:连接OA,作OD⊥AB于点D .在直角△OAD中,则A则扇形的弧长是设底面圆的半径是r,则解得:故答案为15.解:如图所示,作点A关于BC的对称点,连接过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°, AB=2,∴Rt△CDE中,即2DE=CD,∵A与A'关于BC对称,、D、E在同一直线上时,AD+ DE的最小值等于的长,此时,∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.16.解:.17.解:2x+1) ( 2x-1 )时,原式18.( 1 )证明:∵四边形ABCD是平行四边形,∴AD=CB,AD//CB,∴∠DAE=∠BCF,∵DE//BF,中,( AAS) ,∴AE=CF ;(2)证明:由(1)知则DE=BF,又∵DE//BF,∴四边形EBFD是平行四边形,∵BE=DE,∴四边形EBFD为菱形.19.解: (1)在抽取的学生中不及格人数所占的百分比=1-20%-25%-50%=5%,故答案为5% .( 2 )所抽取学生测试成绩的平均分=(分)(3 )由题意总人数=2÷5%=40(人),40×50%=20答:该校九年级学生中优秀等级的人数约为20人.20.解:在Rt△BDC中在Rt△ACD中,解得: CD=18(米) 答:建筑物CD的高度为18米.21.解: (1)设A款保温杯的单价是a元,则B款保温杯的单价是( a+10)元,解得,a=30,经检验,a=30是原分式方程的解,则a+10=40,答: A、B两款保温杯的销售单价分别是30元、40元;( 2 )设购买A款保温杯x个,则购买B款保温杯( 120-x)个,利润为w元,w= ( 30-20 ) x+[40×( 1-10% ) -20] (120-x) =-6x+1920,∵A款保温杯的数量不少于B款保温杯数量的两倍,∴x≥2(120-x),解得,x≥80,∴当x=80时,w取得最大值,此时w=1440,120-x=40,答:当购买A款保温杯80个,B款保温杯40个时,能使这批保温杯的销售利润最大,最大利润是1440元.22. (1)证明:∵ P的中点,∴∠PAD=∠PAB,∵OA=OP,∴∠APO=∠PAO,∵PD⊥AD,∴PD⊥OP,∴DP是⊙O的切线;(2)解:连接BC交OP于E,∵A B为⊙O的直径,∴∠ACB=90°P是的中点,∴OP⊥BC,CE=BE,∴四边形CDPE是矩形,CD=PE, PD=CE∵∠APC=∠B,∴sinAB=13∴AD=9,23.解: ( 1)∵抛物线的顶点是A( 1,3),∴抛物线的解析式为y=a(x-1)2+3,∴OA绕点O顺时针旋转90°后得到OB,∴B (3,-1 ),把B( 3, -1 )代入y=a(x-1)2+3可得a=-1,∴抛物线的解析式为y=- (x-1)2+3,即( 2)①如图1中,∵B (3,-1),∴直线OB的解析式∵A (1,3),∵P(1,m)∴A'(1,2m-3 ),由题意⊙∵直线OA的解析式为y=3x ,直线AB的解析式为y= -2x+5,∵P(1, m),整理得解得(舍弃)或∴满足条件的m的值为  

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map