终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)练习(学生版+教师版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)(教师版).docx
    • 学生
      2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)(学生版).docx
    2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)(教师版)第1页
    2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)(教师版)第2页
    2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)(教师版)第3页
    2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)(学生版)第1页
    2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)(学生版)第2页
    2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)(学生版)第3页
    还剩33页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)练习(学生版+教师版)

    展开

    这是一份2025年新高考数学一轮复习第9章第01讲随机抽样、统计图表、用样本估计总体(八大题型)(练习)练习(学生版+教师版),文件包含2025年新高考数学一轮复习第9章第01讲随机抽样统计图表用样本估计总体八大题型练习教师版docx、2025年新高考数学一轮复习第9章第01讲随机抽样统计图表用样本估计总体八大题型练习学生版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
    题型一:随机抽样、分层抽样
    1.(2024·云南·二模)本次月考分答题卡的任务由高三16班完成,现从全班55位学生中利用下面的随机数表抽取10位同学参加,将这55位学生按进行编号,假设从随机数表第1行第2个数字开始由左向右依次选取两个数字,重复的跳过,读到行末则从下一行行首继续,则选出来的第6个号码所对应的学生编号为( )
    A.51B.25C.32D.12
    2.为保证中小学生享有充足睡眠时间,促进学生身心健康发展,教育部办公厅发布《关于进一步加强中小学睡眠管理工作的通知》,明确学生睡眠时间要求.已知某地区有小学生1200人,初中生900人,高中生900人,教育部门为了了解该地区中小学生每天睡眠时间,现用样本量比例分配的分层抽样从该地区抽取样本,经计算样本中小学生、初中生、高中生每天的平均睡眠时间分别为9.5小时、8小时、7小时,则估计该地区中小学生每天的平均睡眠时间为( )小时.
    A.7.5B.8C.8.3D.8.5
    3.(2024·河南驻马店·二模)电影《孤注一掷》的上映引发了电信诈骗问题的热议,也加大了各个社区反电信诈骗的宣传力度.已知某社区共有居民480人,其中老年人200人,中年人200人,青少年80人,若按年龄进行分层随机抽样,共抽取36人作为代表,则中年人比青少年多( )
    A.6人B.9人C.12人D.18人
    4.(2024·江西南昌·模拟预测)已知三种不同型号的产品数量之比依次为,现用分层抽样的方法抽取容量为的样本,若样本中型号产品有件,则为( )
    A.60B.70C.80D.90
    题型二:统计图表
    5.(2024·四川成都·三模)“数九”从每年“冬至”当天开始计算, 每九天为一个单位,冬至后的第 81 天, “数九”结束, 天气就变得温暖起来. 如图, 以温江国家基准气候站为代表记录了 2023 一 2024 年从“一九”到“九九”成都市的“平均气温”和“多年平均气温” (单位: ),下列说法正确的是( )

    A.“四九”以后成都市“平均气温”一直上升
    B.“四九” 成都市“平均气温” 较“多年平均气温” 低 0.1 ”
    C.“一九”到“五九”成都市“平均气温”的方差小于“多年平均气温”的方差
    D.“一九”到“九九”成都市“平均气温”的极差小于“多年平均气温”的极差
    6.(2024·河北保定·二模)下图为2020年~2023年某国星级酒店数量、营业收入及餐饮收入比重,根据该图,下列结论错误的是( )
    A.2020年~2023年某国星级酒店数量逐年减少
    B.2020年~2023年某国星级酒店营业收入最高不超过2000亿元
    C.2020年~2023年某国星级酒店餐饮收入比重最高的是2021年
    D.2020年~2023年某国星级酒店餐饮收入比重的极差是1.54%
    7.(2024·全国·模拟预测)已知2015—2022年和2023年1~9月某新能源汽车企业的营业收入(单位:亿元)和净利润(单位:亿元)及2015—2022年营业收入的增长率的统计图如图所示,2023年第二、三、四季度的净利润相比上一季度的增长率均为,则下列结论正确的是( )
    A.2015—2022年该企业年营业收入逐年增加
    B.2015—2022年该企业年营业收入增长率最大的是2015年
    C.2022年该企业年净利润超过2017—2021年年净利润总和
    D.2023年第四季度的净利润比第一季度的净利润多约30亿元
    8.如图为某新能源汽车企业2015—2022年及2023年1~9月的营业额(单位:亿元)、净利润(单位:亿元)及2015—2022年营业额增长率的统计图.已知2023年第二、三、四季度的净利润相比上季度均增长10%,则下列结论正确的是( )
    A.2015—2022年该企业的营业额逐年增加
    B.2022年该企业的净利润超过2017—2021年该企业净利润的总和
    C.2015—2022年该企业营业额增长率最大的是2015年
    D.2023年该企业第四季度的净利润比第一季度的净利润多30多亿元
    题型三:频率分布直方图
    9.已知统计某校1 000名学生的某次数学水平测试成绩得到样本频率分布直方图如图所示,则直方图中实数a的值是 .
    10.(2024·高三·北京海淀·开学考试)某直播间从参与购物的人群中随机选出200人,并将这200人按年龄分组,得到的频率分布直方图如图所示,则在这200人中年龄在的人数 ,直方图中 .
    11.(2024·高三·北京石景山·期末)某学校从全校学生中随机抽取了50名学生作为样本进行数学知识测试,记录他们的成绩,测试卷满分100分,将数据分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并整理得到如右频率分布直方图,则图中的值为 ,若全校学生参加同样的测试,估计全校学生的平均成绩为 (每组成绩用中间值代替).
    12.(2024·上海徐汇·一模)某学校组织全校学生参加网络安全知识竞赛,成绩(单位:分)的频率分布直方图如图所示,数据的分组依次为,若该校的学生总人数为1000,则成绩低于60分的学生人数为 .
    13.(2024·山东·一模)为了解某中职学校男生的身体发育情况,对随机抽取的100名男生的身高进行了测量(结果精确到),并绘制了如图所示的频率分布直方图,由图可知,其中身高超过的男生的人数为 .

    题型四:百分位数
    14.(2024·高三·四川·开学考试)已知一组数据:的平均数为6,则该组数据的第40百分位数为 .
    15.数据的第80百分位数为 .
    16.(2024·浙江·模拟预测)随着某抽卡游戏在班级内流行,李华统计了6位同学获得某角色的抽取次数,结果如下:10,60,90,80,20,180,则以上数据的下四分位数为 .
    题型五:样本的数字特征
    17.(多选题)某班语文老师对该班甲、乙、丙、丁4名同学连续7周每周阅读的天数(每周阅读天数可以是)进行统计,根据统计所得数据对这4名同学这7周每周的阅读天数分别做了如下描述:
    甲:中位数为3,众数为5;
    乙:中位数为4,极差为3;
    丙:中位数为4,平均数为3;
    丁:平均数为3,方差为3.
    那么可以判断一周阅读天数一定没有出现7天的是( )
    A.甲B.乙C.丙D.丁
    18.在一次射击训练中,某运动员5次射击的环数依次是,则该组数据的方差 .
    19.(2024·高三·贵州·开学考试)已知一组样本数据1,2,m,6的极差为6,若,则 ,这组数据的方差为 .
    20.若,,…,的平均数为3,方差为4,且,,则新数据,,…,的平均数和标准差分别为 , .
    题型六:总体集中趋势的估计
    21.为了了解某小区2000户居民月用水量使用情况,通过随机抽样获得了100户居民的月用水量.下图是调查结果的频率分布直方图.
    (1)根据频率直方图估计某小区2000户居民月用水量使用大于3的户数;
    (2)利用频率分布直方图估计该样本的众数和中位数(保留到0.01).
    22.2023年8月8日,世界大学生运动会在成都成功举行闭幕式.某校抽取100名学生进行了大运会知识竞赛并记录得分(满分:100,所有人的成绩都在内),根据得分将他们的成绩分成六组,制成如图所示的频率分布直方图.
    (1)求图中a的值;
    (2)估计这100人竞赛成绩的平均数(同一组中的数据用该组区间的中点值为代表)、众数及中位数.
    题型七:总体离散程度的估计
    23.(2024·全国·模拟预测)随着人们生活水平的提高,对零食的需求也在增加,特别是在年轻人群中,零食已经成为他们日常消费的一部分,新兴的消费群体和消费观念为零食集合店的发展提供了巨大的机会和包容性某公司为了了解青少年消费者对甲、乙两个品牌零食集合店的满意程度,统计了10名青少年消费者对这两个品牌零食集合店的打分(满分10分),结果如下:
    (1)求样本平均数和方差;
    (2)判断青少年消费者对甲、乙两个品牌零食集合店的满意度是否有明显差异(若,则认为青少年消费者对甲、乙两个品牌零食集合店的满意度无明显差异,否则认为有明显差异).
    24.(2024·陕西西安·一模)近年来“天宫课堂”受到广大中小学生欢迎,激发了同学们对科学知识的探索欲望和对我国航天事业成就的自豪.为领悟航天精神,感受中国梦想,某校组织了一次“寻梦天宫”航天知识竞赛(满分100分),各年级学生踊跃参加.校团委为了比较高一、高二学生这次竞赛的成绩,从两个年级的答卷中各随机选取了50份,将成绩进行统计得到以下频数分布表:
    试利用样本估计总体的思想,解决下列问题:
    (1)从平均数与方差的角度分析哪个年级学生这次竞赛成绩更好(同一组中的数据用该组区间的中点值为代表)?
    (2)校后勤部决定对参与这次竞赛的学生给予一定的奖励,奖励方案有以下两种:
    方案一:记学生得分为,当时,奖励该学生10元食堂代金券;当时,奖励该学生25元食堂代金券;当时,奖励该学生35元食堂代金券;
    方案二:得分低于样本中位数的每位学生奖励10元食堂代金券;得分不低于中位数的每位学生奖励30元食堂代金券.
    若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择哪种方案?
    25.(2024·全国·模拟预测)某杨梅种植户从购买客户中随机抽取20位客户做质量随访调查,其中购买系列(大棚种植)的10位,购买系列(自然种植)的10位,从杨梅的大小、口感、水分、甜度进行综合打分(满分100分),打分结果记录如下:
    系列(大棚种植):84 81 79 76 95 88 93 86 86 92
    系列(自然种植):92 95 80 75 83 87 90 80 85 93
    (1)分别写出这两个系列综合打分的中位数.
    (2)分别求出这两个系列综合打分的平均数与方差,通过上述数据结果进行分析,你认为推广哪种系列种植更合适?
    题型八:分层方差问题
    26.某快餐店统计了近100天内每日接待的顾客人数,将前50天的数据进行整理得到频率分布表和频率分布直方图.

    (1)求a,b,c的值,并估计该快餐店在前50天内每日接待的顾客人数的平均数;
    (2)已知该快餐店在前50天内每日接待的顾客人数的方差为104,在后50天内每日接待的顾客人数的平均数为51,方差为100,估计这家快餐店这100天内每日接待的顾客人数的平均数和方差.
    27.文明城市是反映城市整体文明水平的综合性荣誉称号,作为普通市民,既是文明城市的最大受益者,更是文明城市的主要创造者,我市为提高市民对文明城市建设的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本(满分100分,成绩均为不低于40分的整数)分成六段:,得到如图所示的频率分布直方图:
    (1)求频率分布直方图中的值;
    (2)若从成绩位于区间和90,100的答卷中,采用分层随机抽样,抽取7份,再从这7份中随机抽取两份,求这两份答卷的成绩都落在的概率;
    (3)已知落在的平均成绩是56,方差是7,落在的平均成绩为65,方差是4,求两组成绩的总平均数和总方差.
    28.某高校为了提升学校餐厅的服务水平,组织4000名师生对学校餐厅满意度进行评分调查,按照分层抽样方法,抽取200位师生的评分(满分100分)作为样本,绘制如图所示的频率分布直方图,并将分数从低到高分为四个等级:

    (1)求图中a的值,并估计满意度评分的25%分位数;
    (2)设在样本中,学生、教师的人数分别为m,,记所有学生的评分为,,…,,其平均数为,方差为,所有教师的评分为,,…,,其平均数为,方差为,总样本的平均数为,方差为,若,,求m的最小值.
    29.(2024·高三·陕西榆林·期中)(1)已知甲乙两名同学的某次体育项目测试成绩分别为:甲:10,13,12,14,16.乙:13,14,12,12,14.求甲乙两人成绩的平均数与方差,比较谁的成绩更稳定.
    (2)某学校为了调查学生的学习情况,现用分层抽样的方法抽取样本,若样本中有20名男生,30名女生,且男生的平均成绩为70分,方差为4,女生的平均成绩为80分,方差为6,求所抽取样本的方差.
    30.2023年10月22日,2023襄阳马拉松成功举行,志愿者的服务工作是马拉松成功举办的重要保障,某单位承办了志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.已知第一、二组的频率之和为0.3,第一组和第五组的频率相同.

    (1)估计这100名候选者面试成绩的平均数.
    (2)现从以上各组中用分层抽样的方法选取20人,担任本次宣传者.若本次宣传者中第二组面试者的面试成绩的平均数和方差分别为62和40,第四组面试者的面试成绩的平均数和方差分别为80和70,据此估计这次第二组和第四组所有面试者的方差.
    1.(2024·江苏镇江·三模)命题P:的平均数与中位数相等;命题Q: 是等差数列,则P是Q的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    2.(2024·黑龙江哈尔滨·模拟预测)已知有4个数据的平均值为5,方差为4,现加入数据6和10,则这6个数据的新方差为( )
    A.B.C.6D.10
    3.(2024·天津河西·二模)某校高三年级举行数学知识竞赛,并将100名学生的竞赛成绩(满分100分,成绩取整数)整理成如图所示的频率分布直方图,则估计这组数据的第85百分位数为( )
    A.85B.86C.86.5D.87
    4.(2024·河南·三模)国内某优秀新能源电池制造企业在锂电池单位能量密度技术上取得了重大突破,该制造企业内的某车间有两条生产线,分别生产高能量密度锂电池和低能量密度锂电池,总产量为400个锂电池.质检人员采用分层随机抽样的方法随机抽取了一个容量为80的样本进行质量检测,已知样本中高能量密度锂电池有35个,则估计低能量密度锂电池的总产量为( ).
    A.325个B.300个C.225个D.175个
    5.(2024·内蒙古包头·三模)某公司为了解用户对其产品的满意度,从使用该产品的用户中随机调查了100个用户,根据用户对产品的满意度评分,得到如图所示的用户满意度评分的频率分布直方图:
    根据此频率分布直方图,下面结论中不正确的是( )
    A.对该公司产品满意度评分低于60分的用户比例估计为35%
    B.对该公司产品满意度评分不低于70分的用户比例估计为40%
    C.估计该公司用户对产品的满意度评分的平均值不超过60分
    D.估计该公司有一半以上的用户,对产品的满意度评分介于50分至80分之间
    6.(2024·安徽合肥·模拟预测)某停车场在统计停车数量时数据不小心丢失一个,其余六个数据分别是10,8,8,11,16,8,若这组数据的平均数、中位数、众数成等差数列,则丢失数据的所有可能值的和为( )
    A.21B.24C.27D.32
    7.(2024·四川绵阳·模拟预测)某教育机构为调查中小学生每日完成作业的时间,收集了某位学生100天每天完成作业的时间,并绘制了如图所示的频率分布直方图(每个区间均为左闭右开),根据此直方图得出了下列结论,其中正确的是( )

    A.估计该学生每日完成作业的时间在2小时至2.5小时的有50天
    B.估计该学生每日完成作业时间超过3小时的概率为0.3
    C.估计该学生每日完成作业时间的中位数为2.625小时
    D.估计该学生每日完成作业时间的众数为2.3小时
    8.(2024·云南·模拟预测)某学校高三年级男生共有个,女生共有个,为调查该年级学生的年龄情况,通过分层抽样,得到男生和女生样本数据的平均数和方差分别为和,已知,则该校高三年级全体学生年龄的方差为( )
    A.B.
    C.D.
    9.(多选题)(2024·广东·模拟预测)已知样本数据,则这组数据的( )
    A.众数为B.平均数为
    C.上四分位数为D.方差为
    10.(多选题)(2024·安徽·模拟预测)移动互联网时代,智能终端市场商机无限,全球商家强势抢攻市场.通过同比数据发现,中国智能手机市场呈现出积极的增长趋势.据报载,年月,中国市场智能手机新机激活量为万台,同比增长(同比增长率),具体分为个品牌排名,统计数据如下表所示,则下列说法正确的有( )
    A.该月个品牌新机激活量同比数据的极差为
    B.该月个品牌新机激活量数据的平均数大于中位数
    C.该月“华为”品牌新机激活量同比增长率大于
    D.去年同期中国市场智能手机新机激活量总量小于万台
    11.(多选题)(2024·湖南邵阳·三模)为了解一片经济林的生长情况,随机抽取了其中60株树木,测量底部周长(单位:cm),所得数据均在区间内,其频率分布直方图如图所示,则( )
    A.图中的值为0.025
    B.样本中底部周长不小于110cm的树木有12株
    C.估计该片经济林中树木的底部周长的分位数为115
    D.估计该片经济林中树木的底部周长的平均数为104(每组数据用该组所在区间的中点值作代表)
    12.(2024·陕西西安·三模)某厂有甲、乙、丙三个车间生产同一种零件,经统计,甲车间生产的100个零件中的次品率为0.03,乙车间生产的200个零件中的次品率为0.02,丙车间生产的200个零件中的次品率为0.03,则该厂零件的次品率的估计值为 .
    13.(2024·安徽·模拟预测)某小学对四年级的某个班进行数学测试,男生的平均分和方差分别为91和11,女生的平均分和方差分别为86和8,已知该班男生有30人,女生有20人,则该班本次数学测试的总体方差为 .
    14.(2024·四川成都·模拟预测)某校为了解高三学生身体素质情况,从某项体育测试成绩中随机抽取个学生的成绩进行分析,得到成绩频率分布直方图(如图所示),估计该校高三学生此项体育成绩的中位数为 .(结果保留整数)
    15.(2024·内蒙古赤峰·二模)我国大部分省市已经实施高考综合改革,实行高考科目“3+1+2”模式,“3”指语文、数学、外语三门统考学科,以原始分数(Raw Scre)计入高考成绩;“1”指考生从物理、历史两门学科中“首选”一门学科,以原始分数计入高考成绩;“2”指考生从化学、生物、政治、地理四门学科中“再选”两门学科,以等级分(Grade Scring)计入高考成绩.按照这个方案,“再选”学科的等级分赋分规则如下:将考生的原始成绩从高到低划分为A、B、C、D、E 五个等级,各等级人数所占比例及赋分区间如下表:
    将各等级内考生的原始分依照等比例转换法分别转换到赋分区间内,得到等级分,转换公式为 其中R₁,R₂分别表示原始分区间的最低分和最高分,( 分别表示等级赋分区间的最低分和最高分,R表示考生的原始分,G 表示考生的等级分,规定原始分为R时,等级分为G.某次化学考试的原始分最低分为45,最高分为94,呈连续整数分布,分成五组:第一组[45,55),第二组[55,65), 第 三 组 [65,75), 第 四 组 [75,85), 第 五 组[85,95),绘制成如图所示的频率分布直方图.已知第一、二组的频率之和为0.3,第一组和第五组的频率相同.
    (1)根据频率分布直方图求a,b的值,并估计此次化学考试原始分的平均值;
    (2)按照等级分赋分规则,估计此次考生化学成绩A等级的原始分区间;
    (3)用估计的结果近似代替原始分区间,若某同学化学成绩的原始分为83,试计算其等级分.
    16.(2024·宁夏银川·一模)滨海盐碱地是我国盐碱地的主要类型之一,如何利用更有效的方法改造这些宝贵的土地资源,成为摆在我们面前的世界级难题.对盐碱的治理方法,研究人员在长期的实践中获得了两种成本差异不大,且能降低滨海盐碱地30-60cm土壤层可溶性盐含量的技术,为了对比两种技术治理盐碱的效果,科研人员在同一区域采集了12个土壤样本,平均分成两组,测得组土壤可溶性盐含量数据样本平均数,方差,B组土壤可溶性盐含量数据样本平均数,方差.用技术1对组土壤进行可溶性盐改良试验,用技术2对组土壤进行可溶性盐改良试验,分别获得改良后土壤可溶性盐含量数据如下:
    改良后组、组土壤可溶性盐含量数据样本平均数分别为和,样本方差分别记为和
    (1)求;
    (2)应用技术1与技术2土壤可溶性盐改良试验后,土壤可溶性盐含量是否有显著降低?(若,则认为技术能显著降低土壤可溶性盐含量,否则不认为有显著降低).
    17.(2024·陕西榆林·二模)金华轨道交通金义东线金义段已于今年1月开通试运行,全长58.4公里,从金华站到义乌秦塘站一路经过17座车站.万达广场站是目前客流量最大的站点,某小组在万达广场站作乘客流量来源地相关调查,从上车人群中随机选取了200名乘客,记录了他们从来源地到万达广场站所花费时间t.得到下表:
    (1)从在万达广场站上车的乘客中任选一人,估计该乘客花费时间t大于或等于18min的概率;
    (2)估计所有在万达广场站上车的乘客花费时间t的中位数;
    (3)已知的10人,其平均数和方差分别为2,1;的60人,其平均数和方差分别为9,2,计算样本数据中的平均数和方差.
    注:已知的平均数为a,方差为b,的平均数为c,方差为d,的平均数为e,则的方差为.
    18.(2024·新疆·三模)某教育部门印发的文件《关于进一步加强中小学生睡眠管理工作的通知》中强调“小学生每天睡眠时间应达到10小时,初中生应达到9小时,高中生应达到8小时”.现调查了1万个当地学生的时间利用信息,得出下图.

    (1)根据上图分别计算小学、初中两个学段睡眠时长的平均值及方差;(结果保留两位小数)
    (2)从学习时间大于睡眠时间的年级中随机挑选两个年级进行问卷调查,求选出的两个年级均来自高中的概率;
    (3)与高中生相比,大学生在时间管理方面有哪些变化,据此提出一条对大学生的建议.
    1.(2024年新课标全国Ⅱ卷数学真题)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并整理如下表
    根据表中数据,下列结论中正确的是( )
    A.100块稻田亩产量的中位数小于1050kg
    B.100块稻田中亩产量低于1100kg的稻田所占比例超过80%
    C.100块稻田亩产量的极差介于200kg至300kg之间
    D.100块稻田亩产量的平均值介于900kg至1000kg之间
    2.(2023年天津高考数学真题)鸢是鹰科的一种鸟,《诗经·大雅·旱麓》曰:“鸢飞戾天,鱼跃余渊”. 鸢尾花因花瓣形如鸢尾而得名,寓意鹏程万里、前途无量.通过随机抽样,收集了若干朵某品种鸢尾花的花萼长度和花瓣长度(单位:cm),绘制散点图如图所示,计算得样本相关系数为,利用最小二乘法求得相应的经验回归方程为,根据以上信息,如下判断正确的为( )
    A.花瓣长度和花萼长度不存在相关关系
    B.花瓣长度和花萼长度负相关
    C.花萼长度为7cm的该品种鸢尾花的花瓣长度的平均值为
    D.若从样本中抽取一部分,则这部分的相关系数一定是
    3.(2022年新高考天津数学高考真题)将1916到2015年的全球年平均气温(单位:),共100个数据,分成6组:,并整理得到如下的频率分布直方图,则全球年平均气温在区间内的有( )
    A.22年B.23年C.25年D.35年
    34箱.
    (1)随机挑选两箱水果,求恰好一级果和二级果各一箱的概率;
    (2)进行分层抽样,共抽8箱水果,求一级果和二级果各几箱;
    (3)抽取若干箱水果,其中一级果共120个,单果质量平均数为303.45克,方差为603.46;二级果48个,单果质量平均数为240.41克,方差为648.21;求168个水果的方差和平均数,并预估果园中单果的质量.
    7.(2023年高考全国乙卷数学(理)真题)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
    记,记的样本平均数为,样本方差为.
    (1)求,;
    (2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
    8.(2023年新课标全国Ⅱ卷数学真题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:

    利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.
    (1)当漏诊率%时,求临界值c和误诊率;
    (2)设函数,当时,求的解析式,并求在区间的最小值.
    9.(2021年全国高考乙卷数学(文)试题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
    旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
    (1)求,,,;
    (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
    目录
    TOC \ "1-2" \h \z \u \l "_Tc178201690" 01 模拟基础练 PAGEREF _Tc178201690 \h 2
    \l "_Tc178201691" 题型一:随机抽样、分层抽样 PAGEREF _Tc178201691 \h 2
    \l "_Tc178201692" 题型二:统计图表 PAGEREF _Tc178201692 \h 2
    \l "_Tc178201693" 题型三:频率分布直方图 PAGEREF _Tc178201693 \h 4
    \l "_Tc178201694" 题型四:百分位数 PAGEREF _Tc178201694 \h 6
    \l "_Tc178201695" 题型五:样本的数字特征 PAGEREF _Tc178201695 \h 6
    \l "_Tc178201696" 题型六:总体集中趋势的估计 PAGEREF _Tc178201696 \h 7
    \l "_Tc178201697" 题型七:总体离散程度的估计 PAGEREF _Tc178201697 \h 8
    \l "_Tc178201698" 题型八:分层方差问题 PAGEREF _Tc178201698 \h 9
    \l "_Tc178201699" 02 重难创新练 PAGEREF _Tc178201699 \h 12
    \l "_Tc178201700" 03 真题实战练 PAGEREF _Tc178201700 \h 18
    0627
    4313
    2432
    5327
    0941
    2512
    6317
    6323
    2616
    8045
    6011
    1410
    9577
    7424
    6762
    4281
    1457
    2042
    5332
    3732
    2707
    3607
    5124
    5179
    3014
    2310
    2118
    2191
    3726
    3890
    0140
    0523
    2617
    甲品牌零食集合店
    6
    10
    7
    9
    6
    5
    6
    8
    8
    5
    乙品牌零食集合店
    5
    9
    5
    4
    5
    7
    10
    9
    8
    8
    成绩
    60,70
    80,90
    90,100
    高一学生人数
    15
    5
    15
    15
    高二学生人数
    10
    10
    20
    10
    组别
    分组
    频数
    频率
    第1组
    [20,30)
    4
    0.08
    第2组
    [30,40)
    a
    第3组
    [40,50)
    20
    b
    第4组
    [50,60)
    0.32
    第5组
    [60,70)
    4
    0.08
    合计
    50
    1.00
    满意度评分
    80,90
    90,100
    满意度等级
    不满意
    基本满意
    满意
    非常满意
    排名
    品牌
    当月新机激活量/万台
    同比新机激活量/万台
    苹果
    小米
    荣耀
    华为
    其他
    等 级
    A
    B
    C
    D
    E
    人数比例
    15%
    35%
    35%
    13%
    2%
    赋分区间
    [86,100]
    [71,85]
    [56,70]
    [41,55]
    [30,40]

    0.66
    0.68
    0.69
    0.71
    0.72
    0.74

    0.46
    0.48
    0.49
    0.49
    0.51
    0.51
    时间t(min)
    人数(人)
    10
    60
    70
    30
    20
    10
    亩产量
    [900,950)
    [950,1000)
    [1000,1050)
    [1050,1100)
    [1100,1150)
    [1150,1200)
    频数
    6
    12
    18
    30
    24
    10
    试验序号
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    伸缩率
    545
    533
    551
    522
    575
    544
    541
    568
    596
    548
    伸缩率
    536
    527
    543
    530
    560
    533
    522
    550
    576
    536
    旧设备
    9.8
    10.3
    10.0
    10.2
    9.9
    9.8
    10.0
    10.1
    10.2
    9.7
    新设备
    10.1
    10.4
    10.1
    10.0
    10.1
    10.3
    10.6
    10.5
    10.4
    10.5

    相关试卷

    2025年新高考数学一轮复习第8章第07讲抛物线及其性质(八大题型)(练习)练习(学生版+教师版):

    这是一份2025年新高考数学一轮复习第8章第07讲抛物线及其性质(八大题型)(练习)练习(学生版+教师版),文件包含2025年新高考数学一轮复习第8章第07讲抛物线及其性质八大题型练习教师版docx、2025年新高考数学一轮复习第8章第07讲抛物线及其性质八大题型练习学生版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。

    2025年新高考数学一轮复习第8章第03讲圆的方程(八大题型)(练习)练习(学生版+教师版):

    这是一份2025年新高考数学一轮复习第8章第03讲圆的方程(八大题型)(练习)练习(学生版+教师版),文件包含2025年新高考数学一轮复习第8章第03讲圆的方程八大题型练习教师版docx、2025年新高考数学一轮复习第8章第03讲圆的方程八大题型练习学生版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    2025年新高考数学一轮复习第7章第03讲直线、平面平行的判定与性质(八大题型)(练习)练习(学生版+教师版):

    这是一份2025年新高考数学一轮复习第7章第03讲直线、平面平行的判定与性质(八大题型)(练习)练习(学生版+教师版),文件包含2025年新高考数学一轮复习第7章第03讲直线平面平行的判定与性质八大题型练习教师版docx、2025年新高考数学一轮复习第7章第03讲直线平面平行的判定与性质八大题型练习学生版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map