所属成套资源:浙教版数学七年级下册重难点培优训练 (2份,原卷版+解析版)
- 浙教版数学七年级下册重难点培优训练专题2.1 二元一次方程及其解法(重点题)(2份,原卷版+解析版) 试卷 0 次下载
- 浙教版数学七年级下册重难点培优训练专题2.2 二元一次方程组及其解法(重点题)(2份,原卷版+解析版) 试卷 0 次下载
- 浙教版数学七年级下册重难点培优训练专题2.4 二元一次方程组的应用(二)(重点题)(2份,原卷版+解析版) 试卷 0 次下载
- 浙教版数学七年级下册重难点培优训练专题2.5 二元一次方程组的应用(三)(重点题)(2份,原卷版+解析版) 试卷 0 次下载
- 浙教版数学七年级下册重难点培优训练专题2.7 二元一次方程组(压轴题综合训练卷)(2份,原卷版+解析版) 试卷 0 次下载
浙教版(2024)七年级下册第二章 二元一次方程组2.4 二元一次方程组的应用当堂检测题
展开
这是一份浙教版(2024)七年级下册第二章 二元一次方程组2.4 二元一次方程组的应用当堂检测题,文件包含浙教版数学七年级下册重难点培优训练专题23二元一次方程组的应用一重点题原卷版doc、浙教版数学七年级下册重难点培优训练专题23二元一次方程组的应用一重点题解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
【典例1】某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元.
(1)甲、乙两组工作一天,商店各应付多少钱?
(2)现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲,乙两组合做.若装修完后,商店每天可盈利200元,你认为如何安排施工有利于商店经营?说说你的理由.
【思路点拨】
(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“甲、乙两个装修组同时施工8天,需付两组费用共3520元;甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设甲组每天完成的工作量为m,乙组每天完成的工作量为n,根据“请甲、乙两个装修组同时施工,8天可以完成;若先请甲组单独做6天,再请乙组单独做12天可以完成”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,进而可求出甲、乙两个装修组单独施工所需时间,利用总费用=(每天需付装修费+200)×装修时间,可求出三个方案所需装修费用及耽误营业损失的费用之和,比较后即可得出结论.
【解题过程】
解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,
依题意得:,
解得:.
答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.
(2)设甲组每天完成的工作量为m,乙组每天完成的工作量为n,
依题意得:,
解得:,
∴甲组单独完成装修所需时间为112(天),
乙组单独完成装修所需时间为124(天).
施工方案①所需装修费用及耽误营业损失的费用之和为(300+200)×12=6000(元);
施工方案②所需装修费用及耽误营业损失的费用之和为(140+200)×24=8160(元);
施工方案③所需装修费用及耽误营业损失的费用之和为(300+140+200)×8=5120(元).
∵5120<6000<8160,
∴方案③请甲,乙两组合做最有利于商店经营.
1.(2021•安徽模拟)《孙子算经》中有一道阐述“盈不足术”的问题,原文如下:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.问:几何?译文为:现在有一根木头,不知道有多长,用一段绳子去测量,拉直后绳子还多四尺五寸;将绳子对折后去量木头,木头还剩一尺,问木头多长?(一尺等于十寸)
2.(2021•孝感二模)我国西汉时期张苍等人辑撰的《九章算术》是人类科学史上应用数学的“算经之首”,书中记载“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”,其意思是:“今有若干人准备乘若干辆马车出行,如果每3人共乘1辆车,则有2辆车空出;如果每2人共乘1辆车,则有9人需步行.问:人数和马车数各是多少?”.请你解答此问题.
3.(2021秋•招远市期末)程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法,书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?请你解决这个问题.
4.(2020春•武川县期中)“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有二十五头,下有七十六足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?
5.(2021春•北碚区校级月考)一个三位数比一个两位数的2倍少49,若把这个三位数放在两位数的左边得到一个五位数,又把这个三位数放在两位数右边得到一个新的五位数,且新五位数比前面的五位数的7倍大3876,求这个三位数和两位数.
6.(2020春•杨浦区校级月考)一个两位数,十位数字与个位数字之和是该两位数的,如果将该两位数的个位和十位数字对调,得到的数比原数的还大3,求这个两位数.
7.(2021春•衡阳县期中)一个n位数(n≥2,n为正整数),我们把最高位上的数移到它的右侧,得到一个新数,再将新数的最高位上的数移到它的右侧,又得到一个新数,…,依此类推,我们把这样操作得到的新数都叫做原数的“谦虚数”,比如56有一个“谦虚数”是65;156有两个“谦虚数”,分别是561、615;2834有三个“谦虚数”,分别是8342、3428、4283.
(1)请写出四位数5832的三个“谦虚数”.
(2)一个两位数,个位上的数与十位上的数和为9,如果这个两位数比它的“谦虚数”少9,求这个两位数.
8.(2020春•衡阳期末)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:
(1)甲、乙两组单独工作一天,商店应各付多少元?
(2)已知甲组单独完成需要12天,乙组单独完成需要24天,单独请哪组,商店所付费用较少?
9.(2021秋•渝中区校级期末)风味美饭店生意火爆,座无虚席,老板决定扩大规模重新装修.若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元.
(1)甲、乙两施工队工作一天,风味美饭店老板应各付多少钱?
(2)若装修完后,风味美饭店马上投入使用,每天可盈利300元,现有三种方案:①甲队单独做:②乙队单独做;③甲、乙两队同时做,你认为哪一种施工方案更有利于饭店老板?请你说明理由.
10.(2021秋•金台区期末)甲、乙两人从相距36km的两地相向而行,如果甲比乙先走2h,那么他们在乙出发2.5h后相遇;如果乙比甲先走2h,那么他们在甲出发3h后相遇,甲、乙两人的速度分别是多少?
11.(2021春•伊通县期末)小明和小丽两相距8千米,小明骑自行车,小丽步行.两人同时出发相向而行,0.8小时相遇;若两人同时出发同向而行,小明2小时可以追上小丽,求小明、小丽每小时各前行多少千米?
12.(2021春•雄县期末)一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别以am/s和bm/s匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.这次越野赛跑的全程为多少米?
13.(2020春•鼓楼区校级期中)南京红山动物园与南京牛首山大约相距30千米,一辆电动车和一辆自行车从两地同时出发相向而行,1小时后相遇.相遇后,自行车继续前进,电动车没电了,通过路边充电站速充20分钟后,按原路返回,在电动车再次出发15分钟后追上了自行车,这时电动车、自行车从出发到现在各自行驶了多少千米?
14.(2021秋•百色期末)甲乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1个小时后调头按原速返回,汽车在返回后半个小时追上了拖拉机.
(1)在这个问题中,1小时20分= 小时;
(2)相向而行时,汽车行驶 小时的路程+拖拉机行驶 小时的路程=160千米;同向而行时,汽车行驶 小时的路程=拖拉机行驶 小时的路程;
(3)全程汽车、拖拉机各自行驶了多少千米?
15.(2020春•青龙县期末)为了测得隧道长度和火车通过隧道时的速度,小明和小亮在隧道两端进行观察:火车从开始入隧道到完全出隧道共用时24秒,整列火车完全在隧道内的时间为14秒,整列火车长300米.请你根据小明和小亮获得的数据,求出隧道的长度和火车过隧道的速度.
16.(2021秋•双牌县期末)解诗谜:悟空顺风探妖踪,千里只用四分钟;归时四分行六百,试问风速是多少?题目的意思是:孙悟空追寻妖精的行踪,去时顺风,1000里只用了4分钟;回来时逆风,4分钟只走了600里,试求风的速度.
17.(2021春•城厢区校级期中)列方程(组)解应用题
已知某江上游甲地到下游乙地相距360千米,一轮船往返于甲、乙两地之间,此轮船现由甲地顺流而下到达乙地用18小时,由乙地逆流而上到达甲地用24小时,求此轮船在静水中的速度以及此江水流的速度.
18.(2021秋•涡阳县期末)某体育场的环行跑道长400m,甲、乙分别以一定的速度练习徒步和骑自行车.如果反向而行,那么他们每隔30s相遇一次.如果同向而行,那么每隔90s乙就追上甲一次.甲、乙的速度分别是多少?
19.(2021春•昆明期末)甲、乙两名同学都以不变的速度在环形路上跑步,如果同时同地出发,反向而行,每隔分钟相遇一次;如果同时同地出发,同向而行,每隔分钟快的追上慢的一次.已知甲比乙跑得快,求甲、乙两名同学每分钟各跑多少圈?
20.(2021•百色)据国际田联《田径场地设施标准手册》,400米标准跑道由两个平行的直道和两个半径相等的弯道组成,有8条跑道,每条跑道宽1.2米,直道长87米;跑道的弯道是半圆形,环形跑道第一圈(最内圈)弯道半径为35.00米到38.00米之间.
某校据国际田联标准和学校场地实际,建成第一圈弯道半径为36米的标准跑道.小王同学计算了各圈的长:
第一圈长:87×2+2π(36+1.2×0)≈400(米);
第二圈长:87×2+2π(36+1.2×1)≈408(米);
第三圈长:87×2+2π(36+1.2×2)≈415(米);
……
请问:
(1)第三圈半圆形弯道长比第一圈半圆形弯道长多多少米?小王计算的第八圈长是多少?
(2)小王紧靠第一圈边线逆时针跑步、邓教练紧靠第三圈边线顺时针骑自行车(均以所靠边线长计路程),在如图的起跑线同时出发,经过20秒两人在直道第一次相遇.若邓教练平均速度是小王平均速度的2倍,求他们的平均速度各是多少?
(注:在同侧直道,过两人所在点的直线与跑道边线垂直时,称两人直道相遇)
相关试卷
这是一份浙教版(2024)七年级下册5.5 分式方程课时练习,文件包含浙教版数学七年级下册重难点培优训练专题53分式方程的应用重点题原卷版doc、浙教版数学七年级下册重难点培优训练专题53分式方程的应用重点题解析版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份初中数学浙教版(2024)七年级下册4.1 因式分解课后练习题,文件包含浙教版数学七年级下册重难点培优训练专题41因式分解重点题原卷版doc、浙教版数学七年级下册重难点培优训练专题41因式分解重点题解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份初中数学浙教版(2024)七年级下册3.4 乘法公式课后测评,文件包含浙教版数学七年级下册重难点培优训练专题33乘法公式及其应用重点题原卷版doc、浙教版数学七年级下册重难点培优训练专题33乘法公式及其应用重点题解析版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。