年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学八下同步讲练第18章第09讲 专题4 平行四边形(特殊的平行四边形)中的最值问题(2份,原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      人教版数学八下同步讲练第18章第09讲 专题4 平行四边形(特殊的平行四边形)中的最值问题(原卷版).docx
    • 解析
      人教版数学八下同步讲练第18章第09讲 专题4 平行四边形(特殊的平行四边形)中的最值问题(解析版).docx
    人教版数学八下同步讲练第18章第09讲 专题4  平行四边形(特殊的平行四边形)中的最值问题(原卷版)第1页
    人教版数学八下同步讲练第18章第09讲 专题4  平行四边形(特殊的平行四边形)中的最值问题(原卷版)第2页
    人教版数学八下同步讲练第18章第09讲 专题4  平行四边形(特殊的平行四边形)中的最值问题(原卷版)第3页
    人教版数学八下同步讲练第18章第09讲 专题4  平行四边形(特殊的平行四边形)中的最值问题(解析版)第1页
    人教版数学八下同步讲练第18章第09讲 专题4  平行四边形(特殊的平行四边形)中的最值问题(解析版)第2页
    人教版数学八下同步讲练第18章第09讲 专题4  平行四边形(特殊的平行四边形)中的最值问题(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版数学八下同步讲练第18章第09讲 专题4 平行四边形(特殊的平行四边形)中的最值问题(2份,原卷版+解析版)

    展开

    这是一份人教版数学八下同步讲练第18章第09讲 专题4 平行四边形(特殊的平行四边形)中的最值问题(2份,原卷版+解析版),文件包含人教版数学八下同步讲练第18章第09讲专题4平行四边形特殊的平行四边形中的最值问题原卷版docx、人教版数学八下同步讲练第18章第09讲专题4平行四边形特殊的平行四边形中的最值问题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
    第09讲专题4 平行(特殊)四边形中的最值问题1.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点N是BC边上一点,点M为AB边上的动点,点D、E分别为CN,MN的中点,则DE的最小值是(  )A.2 B. C.3 D.2.如图,在▱ABCD中,∠C=120°,AD=2AB=8,点H,G分别是边CD,BC上的动点,连接AH,HG,点E为AH的中点,点F为GH的中点,连接EF,则EF的最大值与最小值的差为    .3.如图,在▱ABCD中,已知AB=4,BC=6,∠ABC=60°,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点Q,则线段QC的最小值为   .4.如图,在△ABC中,∠BAC=30°,AB=AC=12,P为AB边上一动点,以PA,PC为边作平行四边形PAQC,则对角线PQ的长度的最小值为    .5.如图,在△ABC中,AB=BC=10,AC=12,点D,E分别是AB,BC边上的动点,连结DE,F,M分别是AD,DE的中点,则FM的最小值为(  )A.12 B.10 C.9.6 D.4.86.如图,在△ABC中,∠BAC=30°,AB=AC=4,P为AB边上一动点,以PA,PC为邻边作平行四边形PAQC,则对角线PQ的最小值为(  )A.2cm B.2.5cm C.3cm D.4cm7.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为(  )A.4 B.5 C.6 D.108.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是(  )A. B.3+3 C.6+ D.9.如图,在矩形ABCD中,AB=6,BC=8,点E是AD边上的动点,点M是点A关于直线BE的对称点,连接MD,则MD的最小值是(  )A.6 B.5 C.4 D.310.如图,在矩形ABCD中,E,F分别是边AB,AD上的动点,P是线段EF的中点,PG⊥BC,PH⊥CD,G,H为垂足,连接GH.若AB=8,AD=6,EF=5,则GH的最小值是    .11.如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为    .12.如图所示,在边长为2的菱形ABCD中,∠DAB=60°,点E为AB中点,点F是AC上一动点,则EF+BF的最小值为   .(提示:根据轴对称的性质)13.如图,P是Rt△ABC的斜边AC(不与点A、C重合)上一动点,分别作PM⊥AB于点M,PN⊥BC于点N,O是MN的中点,若AB=5,BC=12,当点P在AC上运动时,BO的最小值是    .14.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是菱形内一动点,且满足MN=1,连接CN,则CN的最小值为   .15.如图,在菱形ABCD中,AC=24,BD=10.E是CD边上一动点,过点E分别作EF⊥OC于点F,EG⊥OD于点G,连接FG,则FG的最小值为    .16.如图,矩形ABCD中,AB=6,AD=4,点E,F分别是AB,DC上的动点,EF∥BC,则BF+DE最小值是(  )A.13 B.10 C.12 D.517.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为(  )A. B. C. D.18.如图,在Rt△ABC中,∠BAC=90°,且AB=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,点O为MN的中点,则线段AO的最小值为(  )A.4.8 B.5 C.2.4 D.3.619.如图,在△ABC中,∠C=90°,点D在斜边AB上,E、F分别在直角边CA、BC上,且DE⊥AC,DF∥AC.(1)求证:四边形CEDF是矩形;(2)连接EF,若C到AB的距离是5,求EF的最小值.20.如图所示,在菱形ABCD中,AB=8,∠BAD=120°,△AEF为等边三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF.(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.21.如图①,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)连接MN,△BMN是等边三角形吗?为什么?(2)求证:△AMB≌△ENB;(3)①当M点在何处时,AM+CM的值最小;②如图②,当M点在何处时,AM+BM+CM的值最小,请你画出图形,并说明理由.

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map