高考仿真重难点训练06 解三角形-2025年高考数学一轮复习《重难点题型与知识梳理•高分突破》(新高考专用)
展开
这是一份高考仿真重难点训练06 解三角形-2025年高考数学一轮复习《重难点题型与知识梳理•高分突破》(新高考专用),文件包含高考仿真重难点训练06解三角形原卷版docx、高考仿真重难点训练06解三角形解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若的外接圆的半径,,则( )
A.1B.C.2D.
2.设中角A,B,C所对的边分别为a,b,c,若,,,则的面积为( ).
A.B.C.12D.
3.在中,分别为角的对边,若,,,则 ( )
A.2B.3C.D.
4.在中,a,b,c分别为内角A,B,C的对边,且.若,则( )
A.1B.2C.3D.4
5.释迦塔俗称应县木塔,建于公元1056年,是世界上现存最古老最高大之木塔,与意大利比萨斜塔、巴黎埃菲尔铁塔并称“世界三大奇塔”.2016年、释迦塔被吉尼斯世界纪录认定为世界最高的木塔.小张为测量木塔的高度,设计了如下方案:在木塔所在地面上取一点,并垂直竖立一高度为的标杆,从点处测得木塔顶端的仰角为60°,再沿方向前进到达点,并垂直竖立一高度为的标杆,再沿方向前进到达点处,此时恰好发现点,在一条直线上.若小张眼睛到地面的距离,则小张用此法测得的释迦塔的高度约为(参考数据:)( )
A.B.C.D.
6.在锐角中,内角,,的对边分别为,,,且,,则周长的最大值为( )
A.B.C.D.
7.若的内角的对边分别为,则下列说法正确的是( )
A.若,则为锐角三角形
B.若,则此三角形为等腰三角形
C.若,则解此三角形必有两解
D.若是锐角三角形,则
8.在锐角中,角的对边分别为,为的面积,且,则的取值范围为( )
A.B.C.D.
二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.若的三个内角的正弦值为,则( )
A.一定能构成三角形的三条边
B.一定能构成三角形的三条边
C.一定能构成三角形的三条边
D.一定能构成三角形的三条边
10.如图,在锐角中,内角A,B,C的对边分别为a,b,c,若,且,D是外一点且B、D在直线AC异侧,,,则下列说法正确的是( )
A.是等边三角形
B.若,则A,B,C,D四点共圆
C.四边形ABCD面积的最小值为
D.四边形ABCD面积的最大值为
11.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球的半径为R,A,B,为球面上三点,劣弧BC的弧长记为,设表示以为圆心,且过B,C的圆,同理,圆的劣弧的弧长分别记为,曲面(阴影部分)叫做曲面三角形,,则称其为曲面等边三角形,线段OA,OB,OC与曲面围成的封闭几何体叫做球面三棱锥,记为球面.设,则下列结论正确的是( )
A.若平面是面积为的等边三角形,则
B.若,则
C.若,则球面的体积
D.若平面为直角三角形,且,则
三、填空题:本题共3小题,每小题5分,共15分.
12.在中,,.则 .
13.在锐角三角形中,,,则的最小值为 .
14.剪纸又叫刻纸,是一种镂空艺术,是中华汉族最古老的民间艺术之一,如图,一圆形纸片沿直径AB对折,使圆上两点C、重合,D,E为直径AB上两点,且,对折后沿直线DC,EC级剪,展开得到四边形,若,则当四边形的面积最小时, .
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.在中,,,.
(1)求的面积;
(2)求c及的值.
16.在中,分别为内角所对的边,若,.
(1)求的面积;
(2)求的最小值.
17.在中,已知角,,所对的边分别为,,,.
(1)求角的大小;
(2)若为锐角三角形,求的取值范围.
18.在中,角的对边分别为,已知.
(1)求;
(2)若,在边上(不含端点)存在点,使得,求的取值范围.
19.若内一点满足,则称点为的布洛卡点,为的布洛卡角.如图,已知中,,,,点为的布洛卡点,为的布洛卡角.
(1)若,且满足,求的大小.
(2)若为锐角三角形.
(ⅰ)证明:.
(ⅱ)若平分,证明:.
19.对于分别定义在,上的函数,以及实数,若存在,使得,则称函数与具有关系.
(1)若,;,,判断与是否具有关系,并说明理由;
(2)若与具有关系,求的取值范围;
(3)已知,为定义在上的奇函数,且满足:
①在上,当且仅当时,取得最大值1;
②对任意,有.
判断与是否具有关系,并说明理由.
相关试卷
这是一份高考仿真重难点训练08 数列-2025年高考数学一轮复习《重难点题型与知识梳理•高分突破》(新高考专用),文件包含高考仿真重难点训练08数列原卷版docx、高考仿真重难点训练08数列解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份高考仿真重难点训练07 立体几何初步-2025年高考数学一轮复习《重难点题型与知识梳理•高分突破》(新高考专用),文件包含高考仿真重难点训练07立体几何初步原卷版docx、高考仿真重难点训练07立体几何初步解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份高考仿真重难点训练04 三角函数-2025年高考数学一轮复习《重难点题型与知识梳理•高分突破》(新高考专用),文件包含高考仿真重难点训练04三角函数原卷版docx、高考仿真重难点训练04三角函数解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。