所属成套资源:2025年新高考数学【北师大版】大一轮复习讲义【配套PPT+教师版+学生版+同步练习】
第七章 §7.8 空间距离及立体几何中的探索性问题-【北师大版】2025年高考数学大一轮复习(课件+讲义+练习)
展开这是一份第七章 §7.8 空间距离及立体几何中的探索性问题-【北师大版】2025年高考数学大一轮复习(课件+讲义+练习),文件包含第七章§78空间距离及立体几何中的探索性问题-北师大版2025数学大一轮复习课件pptx、第七章§78空间距离及立体几何中的探索性问题-北师大版2025数学大一轮复习讲义练习docx、第七章§78空间距离及立体几何中的探索性问题-北师大版2025数学大一轮复习讲义教师版docx、第七章§78空间距离及立体几何中的探索性问题-北师大版2025数学大一轮复习讲义学生版docx等4份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
1.会求空间中点到直线以及点到平面的距离.2.以空间向量为工具,探究空间几何体中线、面的位置关系或空间角存在的条件.
第一部分 落实主干知识
第二部分 探究核心题型
1.点到直线的距离若点P是直线l外一点,l0是直线l的单位方向向量,点A是直线l上任意一点,则点P到直线l的距离为d=______________.2.点到平面的距离点P到平面α的距离,等于点P与平面α内任意一点A连线所得向量 ,在平面α的单位法向量n0方向上所作投影向量的长度,即d=______.
1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)平面α上不共线的三点到平面β的距离相等,则α∥β.( )(2)点到直线的距离也就是该点与直线上任一点连线的长度.( )(3)直线l平行于平面α,则直线l上各点到平面α的距离相等.( )(4)直线l上两点到平面α的距离相等,则l平行于平面α.( )
2.已知直线l过定点A(2,3,1),且n=(0,1,1)为其一个方向向量,则点P(4,3,2)到直线l的距离为
3.定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体ABCD-A1B1C1D1中,AB=1,BC=2,AA1=3,则异面直线AC与BC1之间的距离是
如图,以D为坐标原点建立空间直角坐标系,则A(2,0,0),C(0,1,0),B(2,1,0),C1(0,1,3),
令x=3,则n=(3,6,2),
4.设正方体ABCD-A1B1C1D1的棱长为2,则点D1到平面A1BD的距离是______.
如图,建立空间直角坐标系,则D1(0,0,2),A1(2,0,2),D(0,0,0),B(2,2,0),
设平面A1BD的法向量为n=(x,y,z),
令x=1,则n=(1,-1,-1),所以点D1到平面A1BD的距离
命题点1 点线距离例1 (2023·连云港模拟)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点,△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA.(1)证明:OA⊥BC;
因为AB=AD,O为BD的中点,所以AO⊥BD,又平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,所以AO⊥平面BCD,又BC⊂平面BCD,所以OA⊥BC.
(2)当AO=1时,求点E到直线BC的距离.
取OD的中点F,连接CF,因为△OCD为正三角形,所以CF⊥OD,过点O作OM∥CF交BC于点M,则OM⊥OD,所以OM,OD,OA两两垂直,以点O为坐标原点,分别以OM,OD,OA所在直线为x轴、y轴、z轴建立空间直角坐标系,如图所示,
所以点E到直线BC的距离
命题点2 点面距离例2 (2024·常州模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)证明:平面AEF⊥平面PBC;
方法一 因为PA⊥底面ABCD,BC⊂平面ABCD,所以PA⊥BC.因为四边形ABCD为正方形,所以AB⊥BC,又因为PA∩AB=A,PA,AB⊂平面PAB,所以BC⊥平面PAB.因为AE⊂平面PAB,所以AE⊥BC.
因为PA=AB,E为线段PB的中点,所以AE⊥PB,又因为PB∩BC=B,PB,BC⊂平面PBC,所以AE⊥平面PBC.又因为AE⊂平面AEF,所以平面AEF⊥平面PBC.
方法二 因为PA⊥底面ABCD,PA⊂平面PAB,所以平面PAB⊥底面ABCD,又平面PAB∩底面ABCD=AB,BC⊥AB,BC⊂平面ABCD,所以BC⊥平面PAB.因为AE⊂平面PAB,所以AE⊥BC.因为PA=AB,E为线段PB的中点,所以AE⊥PB.
因为PB∩BC=B,PB,BC⊂平面PBC,所以AE⊥平面PBC,又因为AE⊂平面AEF,所以平面AEF⊥平面PBC.方法三 因为PA⊥底面ABCD,AB⊥AD,
则A(0,0,0),B(2,0,0),C(2,2,0),P(0,0,2),E(1,0,1),设BF=t(t∈[0,2]),则F(2,t,0),
设n=(x1,y1,z1)为平面AEF的法向量,
则n=(-t,2,t),设m=(x2,y2,z2)为平面PBC的法向量,
取x2=1,则y2=0,z2=1,则m=(1,0,1),因为n·m=-t+0+t=0,所以n⊥m,所以平面AEF⊥平面PBC.
则A(0,0,0),P(0,0,2),E(1,0,1),易知u=(0,1,0)是平面PAB的一个法向量,设BF=t(t∈[0,2]),则F(2,t,0),
令x1=-1,则y1=2,z1=1,所以平面AEF的法向量n=(-1,2,1),
方法二 由(1)可知,∠BAF是直线AF与平面PAB的夹角,
设点P到平面AEF的距离为h,
方法三 易知u=(0,1,0)是平面PAB的一个法向量,
命题点3 异面直线的距离例3 如图,在正四棱柱ABCD-A1B1C1D1中,AB=BC=1,AA1=2.动点P,Q分别在线段C1D,AC上,则线段PQ长度的最小值是
由题意可知,线段PQ长度的最小值为异面直线C1D与AC的距离.如图所示,以点D为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,则A(1,0,0),C(0,1,0),C1(0,1,2),D(0,0,0),
②若能求出点在直线上的投影坐标,可以直接利用两点间距离公式求距离.(2)求点面距一般有以下三种方法①作点到面的垂线,求点到垂足的距离.②等体积法.③向量法.
跟踪训练1 (多选)如图,正方体ABCD-A1B1C1D1的棱长为2,E为棱DD1的中点,F为棱BB1的中点,则
建立如图所示的空间直角坐标系,则A1(2,0,2),B1(2,2,2),E(0,0,1),F(2,2,1),C1(0,2,2),A(2,0,0),B(2,2,0),
所以点F到直线AE的距离即为直线FC1到直线AE的距离,
令z=2,则y=-2,x=1,即n=(1,-2,2).设点B到平面AB1E的距离为d,
因为AE∥FC1,FC1⊄平面AB1E,AE⊂平面AB1E,所以FC1∥平面AB1E,所以直线FC1到平面AB1E的距离等于点C1到平面AB1E的距离.
由C得平面AB1E的一个法向量为n=(1,-2,2),
题型二 立体几何中的探索性问题
例4 (2023·常德模拟)如图,三棱柱ABC-A1B1C1的底面是等边三角形,平面ABB1A1⊥平面ABC,A1B⊥AB,AC=2,∠A1AB=60°,O为AC的中点.(1)求证:AC⊥平面A1BO;
∵△ABC是等边三角形,O是AC的中点,∴AC⊥OB,∵平面ABB1A1⊥平面ABC,平面ABB1A1∩平面ABC=AB,A1B⊥AB,A1B⊂平面ABB1A1,∴A1B⊥平面ABC,∵AC⊂平面ABC,∴A1B⊥AC,∵AC⊥OB,A1B∩OB=B,A1B,OB⊂平面A1BO,∴AC⊥平面A1BO.
存在,线段CC1的中点P满足题意.理由如下:由(1)得A1B⊥平面ABC,OB⊥AC,以O为坐标原点,OA,OB,所在直线分别为x轴、y轴,过点O作Oz∥A1B,以Oz所在直线为z轴,建立如图所示的空间直角坐标系,
易知平面A1OB的一个法向量为n=(1,0,0),设平面POB的法向量为m=(x,y,z),
(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.
跟踪训练2 如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的 倍,P为侧棱SD上的点.(1)求证:AC⊥SD;
如图,连接BD交AC于点O,连接SO.由题意知,SO⊥平面ABCD,以O为坐标原点,以OB,OC,OS所在直线分别为x轴、y轴、z轴,建立空间直角坐标系.
故OC⊥SD,从而AC⊥SD.
(2)若SD⊥平面PAC,求二面角P-AC-D的平面角的大小;
设二面角P-AC-D的平面角为θ,由图可知,θ为锐角,
所以二面角P-AC-D的平面角的大小为30°.
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,请说明理由.
假设在棱SC上存在一点E使BE∥平面PAC.
由于BE⊄平面PAC,故BE∥平面PAC.因此在棱SC上存在点E,使BE∥平面PAC,此时SE∶EC=2∶1.
1.已知三棱柱ABC-A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AC=AA1=1,E,F分别是棱C1C,BC的中点.(1)求证:B1F⊥平面AEF;
∵三棱柱ABC-A1B1C1的侧棱垂直于底面,∠BAC=90°,∴以A为坐标原点,以AB,AC,AA1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,
∵AB=AC=AA1=1,E,F分别是棱C1C,BC的中点,
∴B1F⊥AE,B1F⊥AF,∵AE∩AF=A,AE,AF⊂平面AEF,∴B1F⊥平面AEF.
(2)求点A1到直线B1E的距离.
方法一 ∵A1(0,0,1),∴ =(1,0,0),
∴点A1到直线B1E的距离
方法二 ∵A1(0,0,1),
2.(2024·北京模拟)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,AB=AC=AA1=1,M为线段A1C1上一点.(1)求证:BM⊥AB1;
连接A1B,∵AA1⊥平面ABC,AB,AC⊂平面ABC,∴AA1⊥AB,AA1⊥AC,而AB⊥AC,故建立如图所示的空间直角坐标系,设A1M=a,a∈[0,1],则A(0,0,0),A1(0,0,1),B(1,0,0),C(0,1,0),B1(1,0,1),M(0,a,1),
设平面BCM的法向量n=(x,y,z),
取x=1,得n=(1,1,1-a),
3.如图1,在菱形ABCD中,∠B=60°,BE=EC=1.沿着AE将△BAE折起到△B′AE,使得∠DAB′=90°,如图2所示.
(1)求异面直线AB′与CD夹角的余弦值;
所以BE2+AE2=AB2,即AE⊥BC,又AD∥BC,所以AE⊥AD,在题图2中,∠DAB′=90°,即AD⊥AB′,又AB′∩AE=A,AB′,AE⊂平面AB′E,所以AD⊥平面AB′E,即EC⊥平面AB′E,
又B′E⊂平面AB′E,所以B′E⊥EC,如图,以E为原点,以EC,EA,EB′所在直线分别为x,y,z轴建立空间直角坐标系,
(2)求异面直线AB′与CD之间的距离.
设m=(x,y,z)是异面直线AB′与CD公垂线的方向向量,
4.如图所示,在三棱锥P-ABC中,底面是边长为4的正三角形,PA=2,PA⊥底面ABC,点E,F分别为AC,PC的中点.(1)求证:平面BEF⊥平面PAC;
∵△ABC是正三角形,E为AC的中点,∴BE⊥AC.又PA⊥平面ABC,BE⊂平面ABC,∴PA⊥BE.∵PA∩AC=A,PA,AC⊂平面PAC,∴BE⊥平面PAC.∵BE⊂平面BEF,∴平面BEF⊥平面PAC.
存在.由(1)及已知得PA⊥BE,PA⊥AC,∵点E,F分别为AC,PC的中点,∴EF∥PA,∴EF⊥BE,EF⊥AC.又BE⊥AC,∴EB,EC,EF两两垂直.以E为坐标原点,以EB,EC,EF所在直线分别为x,y,z轴建立空间直角坐标系,如图所示,
设平面PBC的法向量为n=(x,y,z),
∴存在满足条件的点G,点G为PB的中点.
5.(2023·盐城模拟)如图,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为BD和BB1的中点,P为棱C1D1上的动点.(1)是否存在点P,使得PE⊥平面EFC?若存在,求出满足条件时C1P的长度并证明;若不存在,请说明理由;
建立如图所示的空间直角坐标系,根据题意设点P(0,t,2),0≤t≤2,则E(1,1,0),F(2,2,1),C(0,2,0),
设平面EFC的法向量为m=(x,y,z),
令x=1,得z=-2,y=1,∴m=(1,1,-2),
即P与D1重合时,PE⊥平面EFC,此时C1P=2.
(2)当C1P为何值时,平面BCC1B1与平面PEF夹角的正弦值最小.
易知平面BCC1B1的一个法向量为n=(0,1,0),设平面PEF的法向量为r=(x0,y0,z0),
设平面BCC1B1与平面PEF的夹角为θ,
6.(2023·北京模拟)如图,在四棱锥P-ABCD中,平面PBC⊥平面ABCD.△PBC是等腰三角形,且PB=PC=3.在梯形ABCD中,AB∥DC,AD⊥DC,AB=5,AD=4,DC=3.(1)求证:AB∥平面PCD;
∵AB∥CD,AB⊄平面PCD,CD⊂平面PCD,∴AB∥平面PDC.
(2)求二面角A-PB-C的平面角的余弦值;
∵四边形ABCD是直角梯形,AB∥DC,AD⊥DC,AB=5,AD=4,DC=3,
∵平面PBC⊥平面ABCD,∴点P到平面ABCD的距离为2.以D为原点,以DA,DC及平面ABCD过D的垂线分别为x轴、y轴、z轴建立空间直角坐标系(图略).
∴A(4,0,0),B(4,5,0),C(0,3,0),P(2,4,2),
设平面APB的法向量为m=(x1,y1,z1),
令x1=1,则y1=0,z1=1,则m=(1,0,1),设平面PBC的法向量为n=(x2,y2,z2),
令x2=1,则y2=-2,z2=0,则n=(1,-2,0),设二面角A-PB-C的平面角为θ,
由(2)知平面APB的一个法向量为m=(1,0,1),
相关课件
这是一份第七章 §7.8 空间距离及立体几何中的探索性问题-2025年新高考数学一轮复习(课件+讲义+练习),文件包含第七章§78空间距离及立体几何中的探索性问题pptx、第七章§78空间距离及立体几何中的探索性问题教师版docx、第七章§78空间距离及立体几何中的探索性问题同步练习docx、第七章§78空间距离及立体几何中的探索性问题-2025新高考一轮复习讲义学生版docx等4份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
这是一份新高考数学一轮复习课件 第7章 §7.8 空间距离及立体几何中的探索问题(含详解),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,点到直线的距离,点到平面的距离等内容,欢迎下载使用。
这是一份新高考数学一轮复习讲练测课件第7章§7.8空间距离及立体几何中的探索问题 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,点到直线的距离,点到平面的距离等内容,欢迎下载使用。