所属成套资源:2025年中考数学一轮复习讲与 考点精析+真题精讲+题型突破+专题精练(2份,原卷版+解析版)
- 2025年中考数学一轮复习讲与练第3章第5讲 反比例函数(考点精析+真题精讲)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第3章第5讲 反比例函数(题型突破+专题精练)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第3章第6讲 二次函数的图象与性质(题型突破+专题精练)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第3章第7讲 二次函数表达式的确定(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第3章第7讲 二次函数表达式的确定(含抛物线的变化)(题型突破+专题精练)(2份,原卷版+解析版) 试卷 0 次下载
2025年中考数学一轮复习讲与练第3章第6讲 二次函数的图象与性质(考点精析+真题精讲)(2份,原卷版+解析版)
展开
这是一份2025年中考数学一轮复习讲与练第3章第6讲 二次函数的图象与性质(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第3章第6讲二次函数的图象与性质考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第3章第6讲二次函数的图象与性质考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
第6讲二次函数的图像与性质
→➊考点精析←
→➋真题精讲←
考向一二次函数的最值
考向二二次函数平移
考向三二次函数图像对称
考向四二次函数综合性质
考向五二次函数参数问题
考向六二次函数交点问题
第6讲二次函数的图像与性质
二次函数是非常重要的函数,年年都会考查,总分值为18~20分,预计2024年各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查.
→➊考点精析←
一、二次函数的概念
一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.
二、二次函数解析式的三种形式
(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).
(2)顶点式:y=a(x–h)2+k(a,h,k为常数,a≠0),顶点坐标是(h,k).
(3)交点式:y=a(x–x1)(x–x2),其中x1,x2是二次函数与x轴的交点的横坐标,a≠0.
三、二次函数的图象及性质
1.二次函数的图象与性质
2.二次函数图象的特征与a,b,c的关系
四、抛物线的平移
1.将抛物线解析式化成顶点式y=a(x–h) 2+k,顶点坐标为(h,k).
2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:
3.注意
二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.
五、二次函数与一元二次方程的关系
1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0).
2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.
3.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;
(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x轴有且只有一个交点;
(3)b2–4ac0
a0
开口向上
a0(a与b同号)
对称轴在y轴左侧
ab0
与y轴正半轴相交
c0
与x轴有两个交点
b2–4ac
相关试卷
这是一份2025年中考数学一轮复习讲与练第3章第5讲 反比例函数(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第3章第5讲反比例函数考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第3章第5讲反比例函数考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
这是一份2025年中考数学一轮复习讲与练第2章第3讲 分式方程(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第2章第3讲分式方程考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第2章第3讲分式方程考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份2025年中考数学一轮复习讲与练第2章第1讲 一次方程(组)(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第2章第1讲一次方程组考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第2章第1讲一次方程组考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。