人教版(2024)九年级下册29.1 投影精品随堂练习题
展开知识点01 投影
投影的概念:
物体在光线的照射下,会在地面或墙壁上留下它的 ,这就是投影现象.一般地,用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做 ,投影所在的平面叫做 。
平行投影的概念:
由 形成的投影是平行投影。当物体与投影面平行时,则物体与投影是全等的。
正投影:
在平行投影中,投影线 投影面产生的投影叫做正投影。
中心投影:
由 发出的光线形成的投影叫做中心投影。物体与投影面平行时的投影是放大(即位似变换)的关系。
题型考点:①对相关投影的概念的理解。 ②判断投影。③利用投影求值。
【即学即练1】
1.下列现象不属于投影的是( )
A.皮影B.树影C.手影D.素描画
【即学即练2】
2.下列各种现象属于中心投影的是( )
A.晚上人走在路灯下的影子
B.中午用来乘凉的树影
C.上午人走在路上的影子
D.阳光下旗杆的影子
【即学即练3】
3.下列投影现象属于平行投影的是( )
A.手电筒发出的光线所形成的投影
B.太阳光发出的光线所形成的投影
C.路灯发出的光线所形成的投影
D.台灯发出的光线所形成的投影
【即学即练4】
4.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( )
A.B.
C.D.
【即学即练5】
5.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( )
A.逐渐变短B.先变短后变长
C.先变长后变短D.逐渐变长
【即学即练6】
6.在平行投影下,矩形的投影不可能是( )
A.B.C.D.
【即学即练7】
7.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为 m.
【即学即练8】
8.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4m.则路灯的高度OP为 m.
知识点02 视图
三视图的概念:
正视图:从几何体正面看得到的图形叫做 ,可以得到物体的 和 。
左视图:从几何体左面看得到的图形叫做 ,可以得到物体的 和 。
俯视图:从几何体上面看得到的图形叫做 ,可以得到物体的 和 。
画三视图:
画三视图时,要把三视图放在正确的位置,一定要注意主视图与俯视图的 ,主视图与左视图的 ,左视图与俯视图的 。看得见的轮廓线用 表示,看不见的轮廓线用 表示。
题型考点:①判断几何体的三视图。 ②由三视图判断几何体。③相关计算。
【即学即练1】
9.如图所示的几何体从上面看到的形状图是( )
A.B.C.D.
【即学即练2】
10.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是( )
A.①②B.①③C.②③D.③
【即学即练3】
11.如图所示的钢块零件的俯视图为( )
A.B.
C.D.
【即学即练4】
12.如图是一个空心圆柱体,其主视图是( )
A.B.C.D.
【即学即练5】
13.如图是某几何体的三视图,该几何体是( )
A.圆柱B.球C.三棱柱D.长方体
【即学即练6】
14.如图是某一几何体的主视图、左视图、俯视图,该几何体是( )
A.四棱柱B.四棱锥C.三棱柱D.三棱锥
【即学即练7】
15.某几何体由若干个小正方体组成,其俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是( )
A.B.C.D.
【即学即练8】
16.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是( )
A.5B.6C.7D.8
【即学即练9】
17.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.
题型01 投影的判断
【典例1】
下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是( )
A.A⇒B⇒C⇒DB.D⇒B⇒C⇒AC.C⇒D⇒A⇒BD.A⇒C⇒B⇒D
【典例2】
如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子( )
A.越大B.越小C.不变D.无法确定
【典例3】
圆形的物体在太阳光下的投影是( )
A.圆形B.椭圆形
C.线段D.以上都有可能
【典例4】
下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )
A.B.
C.D.
【典例4】
下面4个图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是 .
题型02 与投影有关的计算(相似)
【典例1】
小明家的客厅有一张直径为1米,高0.75米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中点D的坐标为(2,0),则点E的坐标是 .
【典例2】
如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为( )
A.3B.5C.6D.7
【典例3】
圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是( )
A.2πm2B.3π m2C.6π m2D.12π m2
【典例4】
如图,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)
(1)标出王琳站在P处在路灯B下的影子;
(2)计算王琳站在Q处在路灯A下的影长;
(3)计算路灯A的高度.
题型03 判断几何体的三视图
【典例1】
如图所示,从上面看该几何体的形状图为( )
A.B.
C.D.
【典例2】
如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )
A.B.C.D.
【典例3】
从不同方向观察如图所示的几何体,不可能看到的是( )
A.B.C.D.
【典例4】
如图所示物体的左视图为( )
A.B.C.D.
题型04 三视图确定几何体
【典例1】
如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是( )
A.B.C.D.
【典例2】
某个几何体的三视图如图所示,该几何体是( )
A.B.
C.D.
【典例3】
.几何体的三视图如图所示,这个几何体是( )
A.B.
C.D.
【典例4】
某几何体的三视图如图所示,则此几何体是( )
A.圆锥B.圆柱C.长方体D.四棱柱
题型05 利用三视图确定小正方体的数量
【典例1】
如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( )
A.4个B.5个C.6个D.7个
【典例2】
用若干大小相同的小立方块搭成一个几何体,使得从正面和从上面看到这个几何体的形状如图所示,该几何体至多是用( )个小立方块搭成的.
A.5B.6C.7D.8
【典例3】
已知一个几何体由大小相等的若干个小正方体组成,其三视图如图所示,则组成该几何体的小正方体个数为( )
A.6B.7C.8D.9
【典例4】
如图,是由一些完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最多由( )个小正方体搭成.
A.5B.6C.7D.8
题型06 其他计算
【典例1】
一个几何体的三视图如图所示,则该几何体的表面积是 .
【典例2】
如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为 cm2.
【典例3】
如图,是一个长方体的主视图、左视图与俯视图(单位:cm),根据图中数据计算这个长方体的体积是 .
【典例4】
如图是某工件的三视图,求此工件的全面积和体积.
课程标准
学习目标
①投影、平行投影、中心投影的概念
②物体的三视图
掌握投影的相关概念,能够熟练判断投影以及利用投影求值。
掌握物体的三视图,能够根据物体求出三视图,也能够根据三视图判断几何体。
初中数学人教版(2024)七年级下册7.1.1有序数对精品课后测评: 这是一份初中数学人教版(2024)七年级下册<a href="/sx/tb_c102670_t7/?tag_id=28" target="_blank">7.1.1有序数对精品课后测评</a>,文件包含人教版数学七年级下册同步讲义+练习第七章第01讲有序数对2个知识点+3类热点题型讲练+习题巩固原卷版docx、人教版数学七年级下册同步讲义+练习第七章第01讲有序数对2个知识点+3类热点题型讲练+习题巩固解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
初中数学人教版(2024)七年级上册2.1 整式精品一课一练: 这是一份初中数学人教版(2024)七年级上册<a href="/sx/tb_c20152_t7/?tag_id=28" target="_blank">2.1 整式精品一课一练</a>,文件包含人教版数学七年级上册同步讲义+练习第二章第01讲整式原卷版docx、人教版数学七年级上册同步讲义+练习第二章第01讲整式解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
初中数学人教版(2024)七年级上册1.1 正数和负数精品综合训练题: 这是一份初中数学人教版(2024)七年级上册<a href="/sx/tb_c10201_t7/?tag_id=28" target="_blank">1.1 正数和负数精品综合训练题</a>,文件包含人教版数学七年级上册同步讲义+练习第一章第01讲正数与负数原卷版docx、人教版数学七年级上册同步讲义+练习第一章第01讲正数与负数解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。