![浙江省杭州城区6学校2024-2025学年九上数学开学经典试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16294968/0-1729991271344/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省杭州城区6学校2024-2025学年九上数学开学经典试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16294968/0-1729991271377/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省杭州城区6学校2024-2025学年九上数学开学经典试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16294968/0-1729991271393/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
浙江省杭州城区6学校2024-2025学年九上数学开学经典试题【含答案】
展开
这是一份浙江省杭州城区6学校2024-2025学年九上数学开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3h后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y)是时间(x)的函数,那么这个函数的大致图像只能是( )
A.B.C.D.
2、(4分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为( )
A.12B.15C.16D.18
3、(4分)下列事件中,是必然事件的是( )
A.在同一年出生的13名学生中,至少有2人出生在同一个月
B.买一张电影票,座位号是偶数号
C.晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来
D.在标准大气压下,温度低于0℃时冰融化
4、(4分)下列各组数中能作为直角三角形的三边长的是( )
A.B.C.9,41,40D.2,3,4
5、(4分)若,则下列变形错误的是( )
A.B.C.D.
6、(4分)设函数(≠0)的图象如图所示,若,则关于的函数图象可能为( )
A.B.C.D.
7、(4分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )
A.6折B.7折
C.8折D.9折
8、(4分)已知E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD的中点,则四边形EFGH的形状一定是( )
A.平行四边形B.矩形C.菱形D.正方形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,点,,分别是,,的中点,若,则线段的长是__________.
10、(4分)已知一次函数y=2x与y=-x+b的交点为(1,a),则方程组的解为______.
11、(4分)小丽计算数据方差时,使用公式S2=,则公式中=__.
12、(4分)已知函数y=2x2-3x+l,当y=1时,x=_____.
13、(4分)如图,菱形ABCD的周长为12,∠B=60°,则菱形的面积为_________m2
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,菱形中,为对角线的延长线上一点.
(1)求证:;
(2)若,,,求的长.
15、(8分)在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)根据已知条件画出图形;
(2)求证:四边形AFCE是平行四边形.
16、(8分)如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号以每小时16海里的速度向北偏东40°方向航行,“海天”号以每小时12海里的速度向北偏西一定的角度的航向行驶,它们离港口一个半小时后分别位于Q、R处,且相距30海里(即RQ=30).解答下列问题:
(1)求PR、PQ的值;
(2)求“海天”号航行的方向.(即求北偏西多少度?)
17、(10分)如图,在四边形ABCD中,AB=AD=,∠A=90º,∠CBD=30º,∠C=45º,求BD及CD的长.
18、(10分)阅读可以增进人们的知识,也能陶冶人们的情操.我们要多阅读有营养的书.某校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A,B,C,D,E五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).
阅读时间分组统计表
请结合以上信息解答下列问题:
(1)求a,b,c的值;
(2)补全“阅读人数分组统计图”;
(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.
20、(4分)甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S甲2=0.90平方环,S乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__.
21、(4分)如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_________cm.
22、(4分)已知关于x的方程的两根为-3和1,则的值是________。
23、(4分)如图,正方形OABC的边OA,OC在坐标轴上,矩形CDEF的边CD在CB上,且5CD=3CB,边CF在轴上,且CF=2OC-3,反比例函数y= (k>0)的图象经过点B,E,则点E的坐标是____
二、解答题(本大题共3个小题,共30分)
24、(8分)如果一组数据1,2,2,4,的平均数为1.
(1)求的值;
(2)求这组数据的众数.
25、(10分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.
(1)正方体的棱长为 cm;
(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;
(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.
26、(12分)我市飞龙商贸城有甲、乙两家商店均出售白板和白板笔,并且标价相同,每块白板50元,每支白板笔4元.某校计划购买白板30块,白板笔若干支(白板笔数不少于90支),恰好甲、乙两商店开展优惠活动,甲商店的优惠方式是白板打9折,白板笔打7折;乙商店的优惠方式是白板及白板笔都不打折,但每买2块白板送白板笔5支.
(1)以x(单位:支)表示该班购买的白板笔数量,y(单位:元)表示该班购买白板及白板笔所需金额.分别就这两家商店优惠方式写出y关于x的函数解析式;
(2)请根据白板笔数量变化为该校设计一种比较省钱的购买方案.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分析:根据题意中的生产流程,发现前三个小时是生产时间,所以未装箱的产品的数量是增加的,后开始装箱,每小时装的产品比每小时生产的产品数量多,所以未装箱的产品数量是下降的,直至减为零.
详解:由题意,得前三个小时是生产时间,所以未装箱的产品的数量是增加的.
∵3小时后开始装箱,每小时装的产品比每小时生产的产品数量多,∴3小时后,未装箱的产品数量是下降的,直至减至为零.
表现在图象上为随着时间的增加,图象是先上升后下降至0的.
故选A.
点睛:本题考查了的实际生活中函数的图形变化,属于基础题.解决本题的主要方法是根据题意判断函数图形的大致走势,然后再下结论,本题无需计算,通过观察看图,做法比较新颖.
2、C
【解析】
根据已知及全等三角形的判定可得到△ABC≌△CDE,从而得到b的面积=a的面积+c的面积.
【详解】
如图:
∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°
∴∠ACB=∠DEC
∵∠ABC=∠CDE,AC=CE,
在△ABC和△CDE中,
∴△ABC≌△CDE(AAS),
∴BC=DE
∴根据勾股定理的几何意义,b的面积=a的面积+c的面积
∴b的面积=a的面积+c的面积=5+11=1.
故选:C
本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.
3、A
【解析】
必然事件就是一定发生的事件,即发生的概率是1的事件.
【详解】
A.在同一年出生的13名学生中,至少有2人出生在同一个月,属于必然事件;
B.买一张电影票,座位号是偶数号,属于随机事件;
C.晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来,属于随机事件;
D.在标准大气压下,温度低于0℃时冰融化,属于不可能事件;
故选:A.
本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4、C
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、92+162≠252,故不是直角三角形,故不符合题意;
B、()2+()2≠()2,故不是直角三角形,故不符合题意;
C、92+402=412,故是直角三角形,故符合题意;
D、22+32≠42,故不是直角三角形,故不符合题意.
故选C.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
5、D
【解析】
根据两内项之积等于两外项之积对各选项分析判断即可得解
【详解】
解:由得3a=2b,
A. 由可得:3a=2b, 本选项正确;
B. 由可得:3a=2b, 本选项正确;
C. , 可知本选项正确;
D. ,由前面可知本选项错误。
故选:D
本题考查了比例的性质,熟练掌握内项之积等于外项之积是解题的关键.
6、D
【解析】
根据反比例函数解析式以及,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>1,结合x的取值范围即可得出结论.
【详解】
∵(k≠1,x>1),
∴(k≠1,x>1).
∵反比例函数(k≠1,x>1)的图象在第一象限,
∴k>1,
∴>1.
∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.
故选D.
本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.
7、B
【解析】
设可打x折,则有1200×-800≥800×5%,
解得x≥1.
即最多打1折.
故选B.
本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.
8、B
【解析】
本题没有图,需要先画出图形,如图所示
连接AC、BD交于O,根据三角形的中位线定理推出EF∥BD∥HG,EH∥AC∥FG,得出四边形EFGH是平行四边形,根据菱形性质推出AC⊥BD,推出EF⊥EH,即可得出答案.
【详解】
解:四边形EFGH的形状为矩形,
理由如下:
连接AC、BD交于O,
∵E、F、G、H分别是AB、AD、CD、BC的中点,
∴EF∥BD,FG∥AC,HG∥BD,EH∥AC,
∴EF∥HG,EH∥FG,
∴四边形EFGH是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∵EF∥BD,EH∥AC,
∴EF⊥EH,
∴∠FEH=90°,
∴平行四边形EFGH是矩形,
故答案为:B.
本题考查了矩形的判定,菱形的性质,平行四边形的判定,平行线性质等知识点的运用,主要考查学生能否正确运用性质进行推理,题目比较典型,难度适中.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
先根据直角三角形斜边上的中线等于斜边的一半求出AB的长,再根据三角形中位线定理求出EF的长即可.
【详解】
中,,D是AB的中点,
即CD是直角三角形斜边上的中线,
,
又分别是的中点,
∴是的中位线,
,
故答案为:1.
此题主要考查了直角三角形的性质以及三角形中位线定理,熟练掌握它们的性质是解答此题的关键.
10、
【解析】
把(1,a)代入y=2x可确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标的横纵坐标,由此即可求解.
【详解】
解:把(1,a)代入y=2x得a=2,
所以方程组的解为.
故答案为:.
本题考查了一次函数与二元一次方程(组)的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
11、1
【解析】
分析:根据题目中的式子,可以得到的值,从而可以解答本题.
详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.
故答案为1.
点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.
12、0或
【解析】
把y=1时代入解析式,即可求解.
【详解】
解:当y=1时,则1=2x2-3x+1,
解得:x=0或x=,
故答案为0或.
本题考查的是二次函数图象上的点坐标特征,只要把y值代入函数表达式求解即可.
13、
【解析】
首先根据已知求得菱形的边长,再根据勾股定理求得其两条对角线的长,进而求出菱形的面积.
【详解】
解:菱形的周长为12,
菱形的边长为3,
四边形是菱形,且,
为等边三角形,,
,
,
菱形的面积,
故答案为
本题主要考查了菱形的性质,解题的关键是熟练掌握菱形的面积等于对角线乘积的一般,此题难度不大.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)
【解析】
(1)根据菱形的性质,证明即可解答
(2)作于,利用勾股定理得出,作于,设,,根据勾股定理得出,,把数值代入即可
【详解】
(1)证明:∵四边形是菱形,为对角线
∴
在和中,
∵,∠ABE=∠CBE,
∴
∴
(2)作于,∴,
∵,∴,∴,
∴,
∴,
∵,∴,
∴,
作于,设,
∴ ∴
∵
∴
∴ ∴
∴
此题考查菱形的性质,全等三角形的判定与性质,勾股定理,三角形内角和,解题关键在于作辅助线
15、(1)见解析;(2)见解析
【解析】
(1)根据已知条件画出图形即可;
(2)因为AF∥EC,得出∠DFA=∠DEC,∠DAF=∠DCE,因为D是AC的中点,可得DA=DC,推出△DAF≌△DCE,得到AF=CE,因为AF∥EC,即四边形AFCE是平行四边形;
【详解】
解:
(1)根据已知条件画出图形如下:
(2)证明:∵AF∥EC,
∴∠DFA=∠DEC,∠DAF=∠DCE,
∵D是AC的中点,
∴DA=DC,
∴△DAF≌△DCE,
∴AF=CE;
又∵AF∥EC,
∴四边形AFCE是平行四边形;
本题主要考查了平行四边形的判定与性质,掌握平行四边形的判定是解题的关键.
16、(1)18海里、24海里;(2)北偏西
【解析】
(1)根据路程=速度×时间分别求得PQ、PR的长;
(2)再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而求解.
【详解】
(1)PR的长度为:12×1.5=18海里,
PQ的长度为:16×1.5=24海里;
(2)∵
∴,
∵“远航”号向北偏东方向航行,即,
∴,即 “海天”号向北偏西方向航行.
本题主要考查勾股定理的应用和方位角的相关计算,解题的重点是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形.
17、BD=2;CD=
【解析】
过点D作DE⊥BC于E,根据等腰直角三角形的性质求出AD、BD,再根据直角三角形30°角所对的直角边等于斜边的一半求出DE,利用△CDE是等腰直角三角形,即可求出CD的长.
【详解】
解:如图,过点D作DE⊥BC于E,
∵∠A=90°,AD=AB=,
∴由勾股定理可得:
BD=,
∵∠CBD=30°,DEBE,
∴DE=BD=×2=1,
又∵Rt△CDE中,∠DEC=90°,∠C=45°,
∴CE=DE=1,
∴由勾股定理可得
CD=.
本题考查了勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,以及等腰直角三角形的性质,通过作辅助线,把△BCD分成两个直角三角形是解题的关键,也是本题的难点.
18、 (1)20,200,40;(2)补全图形见解析;(3) 24%.
【解析】
分析:(1)根据D类的人数是140,所占的比例是28%,即可求得总人数,然后根据百分比的意义求得c的值,同理求得A、B两类的总人数,则a的值即可求得:进而求得b的值;
(2)根据(1)的结果即可作出;
(3)根据百分比的定义即可求解.
详解:(1)由图表可知,调查的总人数为 140÷28%=500(人),
∴b=500×40%=200,
c=500×8%=40,
则a=500-(100+200+140+40)=20,
(2)补全图形如图所示.
(3)由(1)可知×100%=24% .
答:估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比为24%.
点睛:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4,0)
【解析】
根据抛物线p=ax2−10ax+8(a>0)经过点C、D和二次函数图象具有对称性,可以求得该抛物线顶点的横坐标和CD的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.
【详解】
解:∵抛物线p=ax2−10ax+8=a(x−5)2−25a+8,
∴该抛物线的顶点的横坐标是x=5,当x=0时,y=8,
∴点D的坐标为:(0,8),
∴OD=8,
∵抛物线p=ax2−10ax+8(a>0)经过点C、D,CD∥AB∥x轴,
∴CD=5×2=10,
∴AD=10,
∵∠AOD=90°,OD=8,AD=10,
∴AO=,
∵AB=10,
∴OB=10−AO=10−6=4,
∴点B的坐标为(4,0),
故答案为:(4,0)
本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
20、甲
【解析】
试题分析:当两人的平均成绩相同时,如果方差越小则说明这个人的成绩越稳定.
21、1
【解析】
根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.
【详解】
Rt△ACD中,AC=AB=4cm,CD=3cm;
根据勾股定理,得:AD==5(cm);
∴AD+BD-AB=1AD-AB=10-8=1cm;
故橡皮筋被拉长了1cm.
故答案是:1.
此题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.
22、
【解析】
由根与系数的关系可分别求得p、q的值,代入则可求得答案.
【详解】
解:∵关于x的方程x2+px+q=0的两根为-3和1,
∴-3+1=-p,-3×1=q,
∴p=2,q=-3,
∴q-p=-3-2=-1,
故答案为-1.
本题主要考查根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1•x2=.
23、
【解析】
设正方形OABC的边0A=a,可知OA=OC=AB=CB=a,所以点B的坐标为(aa),推出反比例函数解析式的k=a,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为( ,3a-3),根据5CD=3CB,可求出点E的坐标
【详解】
由题意可设:正方形OABC的边OA=a
∴OA= OC=AB= CB
∴点B的坐标为(a,a),即k=a
CF=2OC-3
∴CF=2a-3
∵OF=OC+CF=a+2a-3=3a-3
∴点E的纵坐标为3a-3
将3a-3代入反比例函数解析式y= 中,可得点E的横坐标为
∵四边形CDEF为矩形,
∴CD=EF=
5CD=3CB
=3a,可求得:a=
将a=,代入点E的坐标为( ,3a-3),
可得:E的坐标为
故答案为:
本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键
二、解答题(本大题共3个小题,共30分)
24、(1);(2)2和4.
【解析】
(1)利用平均数的计算公式列出关于x的方程,求出x即可求出答案;
(2)根据众数的定义即可求出答案.
【详解】
解:(1)由平均数为1,得,
解得:.
(2)当时,这组数据是2,2,1,4,4,
其中有两个2,也有两个4,是出现次数最多的,
∴这组数据的众数是2和4.
本题考查平均数和众数,熟练掌握平均数的计算公式和众数的定义是解决本题的关键.在(2)中,一定记住一组数的众数有可能有几个.
25、(1)10;(2)y=x+(12≤x≤28);(3)4 s.
【解析】
(1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;
(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x的取值范围;
(3)利用一次函数图象结合水面高度的变化得出t的值.
【详解】
(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,
所以正方体的棱长为10cm;
故答案为10cm;
(2)设线段AB对应的函数解析式为:y=kx+b,
∵图象过A(12,0),B(28,20),
∴,
解得:,
∴线段AB对应的解析式为:(12≤x≤28);
(3)∵28﹣12=16(cm),
∴没有立方体时,水面上升10cm,所用时间为:16秒,
∵前12秒由立方体的存在,导致水面上升速度加快了4秒,
∴将正方体铁块取出,经过4秒恰好将此水槽注满.
26、(1)到甲商店购买所需金额为: y=2.8x+1350;到乙商店购买所需金额为:y=4x+1200;(2)购买白板笔在多于1支时到甲商店,少于1支时到乙商店,恰好购买1支时到甲商店和到乙商店一样
【解析】
(1)根据总价=单价×数量的关系,分别列出到甲、乙两商店购买所需金额y与白板笔数量x的关系式,化简即得y与x的一次函数关系式;
(2)根据两个商店购买的钱数,分别由甲大于乙,甲等于乙,甲小于乙列出一次不等式求解即可.
【详解】
(1)到甲商店购买所需金额为:y=50×0.9×30+4×0.7x=2.8x+1350,即y=2.8x+1350,
到乙商店购买30块白板可获赠=75支白板笔,实际应付款y=50×30+4(x-75)=4x+1200,即y=4x+1200.
(2)由2.8x+13501,
由2.8x+1350=4x+1200解得x=1,
由2.8x+1350>4x+1200解得x
相关试卷
这是一份浙江省杭州市上城区建兰中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省杭州拱墅区四校联考2024年九上数学开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江杭州上城区七校联考2024-2025学年九上数学开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。