搜索
    上传资料 赚现金
    英语朗读宝

    浙江省杭州市上城区建兰中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】

    浙江省杭州市上城区建兰中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】第1页
    浙江省杭州市上城区建兰中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】第2页
    浙江省杭州市上城区建兰中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省杭州市上城区建兰中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】

    展开

    这是一份浙江省杭州市上城区建兰中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为( )
    A.30°B.40°C.70°D.80°
    2、(4分)下列说法正确的是( )
    A.两个全等三角形是特殊的位似图形B.两个相似三角形一定是位似图形
    C.位似图形的面积比与周长比都和相似比相等D.位似图形不可能存在两个位似中心
    3、(4分)如图,点A,B在反比例函数(x>0)的图象上,点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,已知点A、B的横坐标分别为1、2,若△OAC与△ABD的面积之和为3,那么k的值是( )
    A.5B.4C.3D.2
    4、(4分)不等式x+1≥2x﹣1的解集在数轴上表示为( )
    A.B.C.D.
    5、(4分)如图,点E是菱形ABCD对角线BD上任一点,点F是CD上任一点,连接CE,EF,当,时,的最小值是( )
    A.B.10C.D.5
    6、(4分)已知一组数据,,,,的平均数为5,则另一组数据,,,,的平均数为( )
    A.4B.5C.6D.10
    7、(4分)下列各点中,在函数 y=2x-5 图象上的点是( )
    A.(0,0)B.(,-4)C.(3,-1)D.(-5,0)
    8、(4分)如图,□ABCD的对角线相交于点O,下列式子不一定正确的是( )
    A.AC=BDB.AB=CDC.∠BAD=∠BCDD.AO=CO
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,,,将绕点顺时针旋转,点、旋转后的对应点分别是点和,连接,则的度数是______.
    10、(4分)不等式的负整数解有__________.
    11、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为,,,点P在BC(不与点B、C重合)上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.

    12、(4分)计算_________.
    13、(4分)计算=_____________
    三、解答题(本大题共5个小题,共48分)
    14、(12分)分解因式
    (1)
    (2)
    15、(8分)在梯形中,,点在直线上,联结,过点作的垂线,交直线与点,

    (1)如图1,已知,:求证:;
    (2)已知:,
    ① 当点在线段上,求证:;
    ② 当点在射线上,①中的结论是否成立?如果成立,请写出证明过程;如果不成立,简述理由.
    16、(8分) “2019宁波国际山地马拉松赛”于2019年3月31日在江北区举行,小林参加了环绕湖8km的迷你马拉松项目(如图1),上午8:00起跑,赛道上距离起点5km处会设置饮水补给站,在比赛中,小林匀速前行,他距离终点的路程s(km)与跑步的时间t(h)的函数图象的一部分如图2所示
    (1)求小林从起点跑向饮水补给站的过程中与t的函数表达式
    (2)求小林跑步的速度,以及图2中a的值
    (3)当跑到饮水补给站时,小林觉得自己跑得太悠闲了,他想挑战自己在上午8:55之前跑到终点,那么接下来一段路程他的速度至少应为多少?
    17、(10分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
    (1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
    (2)求本次调查获取的样本数据的平均数、众数和中位数;
    (3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
    18、(10分)如图,在矩形中,对角线、相交于点.若,,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)约分___________.
    20、(4分)如果一次函数的图像经过点和,那么函数值随着自变量的增大而__________.(填“增大”或“不变”或“减小”)
    21、(4分)中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化.如图,如果所在位置的坐标为(﹣1,﹣1),所在位置的坐标为(2,﹣1),那么,所在位置的坐标为__________.
    22、(4分)分解因式:3a2﹣12=___.
    23、(4分)如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=______.(用含有n的代数式表示)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在四边形ABCD中,BD为一条对角线,且,,E为AD的中点,连接BE.
    (1)求证:四边形BCDE为菱形;
    (2)连接AC,若AC平分,,求AC的长.
    25、(10分)一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:
    (1)请你根据上述统计数据,把下面的图和表补充完整;
    一分钟投篮成绩统计分析表:
    (2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.
    26、(12分)某校组织275名师生郊游,计划租用甲、乙两种客车共7辆,已知甲客车载客量是30人,乙客车载客量是45人,其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需3000元.
    (1)租用一辆甲种客车、一辆乙种客车的租金各多少元?
    (2)设租用甲种客车辆,总租车费为元,求与的函数关系式;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.
    【详解】
    ∵AB=AC,∠A=40°,
    ∴∠ABC=∠C=(180°−∠A)÷2=70°,
    ∵线段AB的垂直平分线交AB于D,交AC于E,
    ∴AE=BE,
    ∴∠ABE=∠A=40°,
    ∴∠CBE=∠ABC-∠ABE=30°,
    故选:A.
    本题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握相关性质,运用数形结合思想是解题的关键.
    2、D
    【解析】
    根据位似图形的定义与性质对各个选项进行判断即可.
    【详解】
    A.全等三角形是特殊的相似三角形,其相似比为1,但是两个全等三角形不一定对应顶点的连线相交于一点,对应边互相平行,故本选项错误,
    B.两个位似三角形的对应顶点的连线一定相交于一点,对应边一定互相平行,而相似三角形只要求形状相同、大小不等,并没有位置上的特殊要求,故本选项错误,
    C.位似图形的面积的比等于相似比的平方,周长的比等于相似比,故本选项错误,
    D.两个位似图形不仅是相似图形,而且对应顶点的连线相交于一点,这一点是唯一的, 故本选项正确.
    故选D.
    本题主要考查位似图形的定义与性质,1.位似图形对应线段的比等于相似比;2.位似图形的对应角都相等;3.位似图形对应点连线的交点是位似中心;4.位似图形面积的比等于相似比的平方;5.位似图形高、周长的比都等于相似比;6.位似图形对应边互相平行或在同一直线上.
    3、A
    【解析】
    先分别表示出A、B、C、D的坐标,然后求出AC=k-1,BD=-,继而根据三角形的面积公式表示出S△AOC+S△ABD==3,解方程即可.
    【详解】
    ∵点A,B在反比例函数(x>0)的图象上,点A、B的横坐标分别为1、2,
    ∴A(1,1),B(2,),
    又∵点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,
    ∴C(1,),D(2,),
    ∴AC=k-1,BD=-,
    ∴S△AOC+S△ABD==3,
    ∴k=5,
    故选A.
    本题考查了反比例函数图象上点的坐标特征,三角形的面积,正确表示出△OAC与△ABD的面积是解题的关键.
    4、B
    【解析】
    先求出不等式的解集,再根据不等式解集的表示方法,可得答案.
    【详解】
    移项,
    得:x﹣2x≥﹣1﹣1,
    合并同类项,
    得:﹣x≥﹣2,
    系数化为1,
    得:x≤2,
    将不等式的解集表示在数轴上如下:

    故选B.
    本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    5、C
    【解析】
    过A作AF⊥CD交BD于E,则此时,CE+EF的值最小,CE+EF的最小值=AF,根据已知条件得到△ADF是等腰直角三角形,于是得到结论.
    【详解】
    解:如图,

    ∵四边形ABCD是菱形,
    ∴点A与点C关于BD对称,
    过A作AF⊥CD交BD于E,则此时,CE+EF的值最小,
    ∴CE+EF的最小值为AF,
    ∵∠ABC=45°,
    ∴∠ADC=∠ABC=45°,
    ∴△ADF是等腰直角三角形,
    ∵AD=BC=10,
    ∴AF=AD=,
    故选C.
    本题考查了轴对称-最短路线问题,菱形的性质,等腰直角三角形的判定和性质,正确的作出图形是解题的关键.
    6、C
    【解析】
    根据平均数的性质,所有数之和除以总个数即可得出平均数.
    【详解】
    依题意得:++++
    所以平均数为6.
    故选C.
    考查算术平均数,掌握平均数的计算方法是解题的关键.
    :
    7、B
    【解析】
    只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.
    【详解】
    解:A、把(0,0)代入y=2x-5得:左边=0,右边=2×(0-1)-5=-5,左边≠右边,故A选项错误;
    B、把(,-4)代入y=2x-5得:左边=-4,右边=2×-5=-4,左边=右边,故B选项正确;
    C、把(3,-1)代入y=2x-5得:左边=-1,右边=2×3-5=1,左边≠右边,故C选项错误;
    D、把(-5,0)代入y=2x-5得:左边=0,右边=2×(-5)-5=-15,左边≠右边,故D选项错误.
    故选:B.
    本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.
    8、A
    【解析】
    根据平行四边形的性质逐项判断即可得.
    【详解】
    A、平行四边形的对角线不一定相等,则不一定正确,此项符合题意
    B、平行四边形的两组对边分别相等,则一定正确,此项不符题意
    C、平行四边形的两组对角分别相等,则一定正确,此项不符题意
    D、平行四边形的两对角线互相平分,则一定正确,此项不符题意
    故选:A.
    本题考查了平行四边形的性质,熟记平行四边形的性质是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、35°
    【解析】
    由旋转的性质可得AB=AD,∠BAD=70°,由等腰三角形的性质和直角三角形的性质可求解.
    【详解】
    ∵将△ABC绕点A顺时针旋转70°,
    ∴AB=AD,∠BAD=70°, ∠AED=90°
    ∴∠ABD=55°
    ∵∠BED=∠AED =90°
    ∴∠BDE=35°
    故答案为35°
    本题考查了旋转的性质,等腰三角形的性质和直角三角形的性质,熟练运用旋转的性质是本题的关键.
    10、-5、-4、-3、-2、-1
    【解析】
    求出不等式的解集,取解集范围内的负整数即可.
    【详解】
    解:移项得:
    合并同类项得:
    系数化为1得:

    所以原不等式的负整数解为:-5、-4、-3、-2、-1
    故答案为:-5、-4、-3、-2、-1
    本题主要考查了求不等式的整数解,确定不等式的解集是解题的关键.
    11、(1,3)或(4,3)
    【解析】
    根据△ODP是腰长为5的等腰三角形,因此要分类讨论到底是哪两条腰相等:①PD=OD为锐角三角形;②OP=OD;③OD=PD为钝角三角形,注意不重不漏.
    【详解】
    ∵C(0,3),A(9,0)
    ∴B的坐标为(9,3)
    ①当P运动到图①所示的位置时

    此时DO=PD=5
    过点P作PE⊥OA于点E,
    在RT△OPE中,根据勾股定理4
    ∴OE=OD-DE=1
    此时P点的坐标为(1,3);
    ②当P运动到图②所示的位置时
    此时DO=PO=5
    过点P作PE⊥OA于点E,
    在RT△OPE中,根据勾股定理4
    此时P点的坐标为(4,3);
    ③当P运动到图③所示的位置时
    此时OD=PD=5
    过点P作PE⊥OA于点E
    在RT△OPE中,根据勾股定理4
    ∴OE=OD+DE=9
    此时P点的坐标为(9,3),此时P点与B点重合,故不符合题意.
    综上所述,P的坐标为(1,3)或(4,3)
    本题主要考查等腰三角形的判定以及勾股定理的应用.
    12、19+6
    【解析】
    根据完全平方公式展开计算即可。
    【详解】
    解:18+6+1=19+6
    本题考查了用完全平方公式进行实数的计算,理解和掌握乘法公式是关键。
    13、3
    【解析】
    根据零指数幂和负整数次幂的定义,化简计算即可得到答案.
    【详解】
    解:,
    故答案为:3.
    本题考查了零指数幂和负整数次幂的定义,解题的关键是正确进行化简.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)
    【解析】
    (1)先提取-1,然后利用完全平方公式进行因式分解;(2)先提取(a-5),然后利用平方差公式进行因式分解.
    【详解】
    解:(1)
    =
    =
    (2)
    =
    =
    =
    本题考查提公因式和公式法因式分解,掌握因式分解的技巧正确计算是本题的解题关键.
    15、(1)证明见解析;
    (2)①证明见解析;②结论仍然成立,证明见解析.
    【解析】
    (1)过F作FM⊥AD,交AD的延长线于点M,通过AAS证明△ABE≌△EMF,根据全等三角形的性质即可得出AB=AD;
    (2)①在AB上截取AG=AE,连接EG.通过ASA证明△BGE≌△EDF,根据全等三角形的性质即可得出BE=EF;

    【详解】
    (1)如图:
    过F作FM⊥AD,交AD的延长线于点M,
    ∴∠M=90°,
    ∵∠BEF=90°,
    ∴∠AEB+MEF=90°,
    ∵∠A=90°,
    ∴∠ABE+∠AEB=90°,
    ∴∠MEF=∠ABE,
    在△ABE和△EMF中,

    ∴△ABE≌△EMF(AAS)
    ∴AB=ME,AE=MF,
    ∵AM∥BC,∠C=45°,
    ∴∠MDF=∠C=45°,
    ∴∠DFM=45°,
    ∴DM=FM,
    ∴DM=AE,
    ∴DM+ED=AE+ED,
    即AD=EM,
    ∴AB=AD;
    (2)①证明:如图,
    在AB上截取AG=AE,连接EG,则∠AGE=∠AEG,
    ∵∠A=90°,∠A+∠AGE+∠AEG=180°,
    ∴∠AGE=45°,
    ∴∠BGE=135°,
    ∵AD∥BC,
    ∴∠C+∠D=180°,
    又∵∠C=45°,
    ∴∠D=135°,
    ∴∠BGE=∠D,
    ∵AB=AD,AG=AE,
    ∴BG=DE,
    ∵EF⊥BE,
    ∴∠BEF=90°,
    又∵∠A+∠ABE+∠AEB=180°,
    ∠AEB+∠BEF+∠DEF=180°,
    ∠A=90°,
    ∴∠ABE=∠DEF,
    在△BGE与△EDF中,

    ∴△BGE≌△EDF(ASA),
    ∴BE=EF;
    ②结论仍然成立,证明如下,
    如图:
    延长BA到点G,使BG=ED,连接EG,
    则△EAG是等腰直角三角形,
    ∴∠EGB=45°,
    ∵ED∥BC,∠C=45°,
    ∴∠FDE=45°,
    ∴∠FDE=45°,
    ∴∠EGB=∠FDE,
    ∵∠A=90°,
    ∴∠AEB+∠ABE=90°,
    ∵EF⊥EB,
    ∴∠FED+∠AEB=90°,
    ∴∠AEB=∠FED,
    在△BGE与△EFD中,

    ∴△BGE≌△EDF(ASA),
    ∴BE=EF.
    本题是四边形综合题,考查了等腰直角三角形的性质,梯形的性质,全等三角形的判定和性质,综合性较强,有一定的难度.添加适当的辅助线构造全等三角形是解题的关键.
    16、(1);(2)速度为:km/h,a=;(3)接下来一段路程他的速度至少为13.5km/h.
    【解析】
    (1)根据图象可知,点(0,8)和点(,5)在函数图象上,利用待定系数法求解析式即可;
    (2)由题意,可知点(a,3)在(1)中的图象上,将其代入求解即可;
    (3)设接下来一段路程他的速度为xkm/h,利用
    【详解】
    解:(1)设小林从起点跑向饮水补给站的过程中s与t的函数关系式为:s=kt+b,
    (0,8)和(,5)在函数s=kt+b的图象上,
    ∴,解得:,
    ∴s与t的函数关系式为:;
    (2)速度为:(km/h),
    点(a,3)在上,
    ∴,解得:;
    (3)设接下来一段路程他的速度为xkm/h,
    根据题意,得:x≥3,
    解得:x≥13.5
    答:接下来一段路程他的速度至少为13.5km/h.
    本题主要考查一次函数的应用,解决第(3)题的关键是明确,要在8点55之前到达,需满足在接下来的路程中,速度×时间≥路程.
    17、(1)50; 1;(2)2;3;15;(3)608人.
    【解析】
    (1)根据条形统计图即可得出样本容量:4+2+12+3+8=50(人);根据扇形统计图得出m的值:;
    (2)利用平均数、中位数、众数的定义分别求出即可.
    (3)根据样本中捐款3元的百分比,从而得出该校本次活动捐款金额为3元的学生人数.
    【详解】
    解:(1)根据条形图4+2+12+3+8=50(人),
    m=30-20-24-2-8=1;
    故答案为:50; 1.
    (2)∵,
    ∴这组数据的平均数为:2.
    ∵在这组样本数据中,3出现次数最多为2次,
    ∴这组数据的众数为:3.
    ∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,
    ∴这组数据的中位数为:,
    (3)∵在50名学生中,捐款金额为3元的学生人数比例为1%,
    ∴由样本数据,估计该校1900名学生中捐款金额为3元的学生人数有1900×1%=608人.
    ∴该校本次活动捐款金额为3元的学生约有608人.
    此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    18、
    【解析】
    首先根据矩形的性质可得,易证是等边三角形,即可得OA的长度,可得AC的长度.
    【详解】
    在矩形中,



    是等边三角形.


    本题考查了矩形的性质以及等边三角形的判定,掌握矩形的性质是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据分式的性质,分子分母同时扩大或缩小相同倍数时分式的值不变即可解题.
    【详解】
    =,(分子分母同时除以6abc).
    本题考查了分式的变形和化简,属于简单题,熟悉分式的性质是解题关键.
    20、增大
    【解析】
    根据一次函数的单调性可直接得出答案.
    【详解】
    当时,;当时,,
    ∵ ,
    ∴函数值随着自变量的增大而增大,
    故答案为:增大.
    本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键.
    21、(﹣3,2)
    【解析】
    由“士”的位置向右平移减1个单位,在向上平移1个单位,得
    所在位置的坐标为 (-3,2),
    故答案是:(-3,2).
    22、3(a+2)(a﹣2)
    【解析】
    要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
    3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).
    23、180°﹣n°
    【解析】
    由四边形ABCD是平行四边形,可知∠B=180°﹣∠C;再由由折叠的性质可知,∠GHC=∠C,即可得∠GHB=180°﹣∠C;根据三角形的外角的性质可知∠1=∠GHB+∠B=360°﹣2∠C,即可得360°﹣2∠C=n°,由此求得∠C=180°﹣n°.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠B=180°﹣∠C,
    由折叠的性质可知,∠GHC=∠C,
    ∴∠GHB=180°﹣∠C,
    由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,
    ∴360°﹣2∠C=n°,
    解得,∠C=180°﹣n°,
    故答案为:180°﹣n°.
    本题考查的是平行四边形的性质及图形翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)详见解析(2)
    【解析】
    (1) 题干中由且可知,一组对边平行且相等的四边形是平行四边形,则四边形BCDE是平行四边形,又知BE是直角三角形斜边的中线,直角三角形斜边的中线等于斜边的一半,则得到BE=ED,从而再用一组邻边相等的平行四边形是菱形证明即可.
    (2)通过 DE∥BC和 AC平分,可得到∠BAC=∠ACB,从而由等角对等边得到AB=BC=1,则此时直角三角形ABD,有一个执教不是斜边的一半,则可知这个直角边对应的角是30°,找到30°才是题目的突破口,然后依次得到角度的关系,证明得到三角形ACD是直角三角形,再用勾股定理解得AC的长.
    【详解】
    (1)证明:∵DE∥BC且DE=BC(已知)
    ∴四边形BCDE是平行四边形(一组对边平行且相等的四边形是平行四边形)
    又∵E为直角三角形斜边AD边的中点(已知)
    ∴BE=AD,即BE=DE(直角三角形斜边的中线等于斜边的一半)
    ∴平行四边形四边形BCDE是菱形(一组邻边相等的平行四边形是菱形)
    (2)
    连接AC,如图可知:
    ∵DE∥BC(已知)
    ∴∠DAC=∠ACB(两直线平行内错角相等)
    又∵AC平分(已知)
    ∴∠BAC=∠DAC(角平分线的定义)
    即∠BAC=∠ACB(等量代换)
    ∴AB=BC=1(等角对等边)
    由(1)可知:AD=2ED=2BC=2
    在直角三角形中AB=1,AD=2
    ∴∠ADB=30°(直角三角形中,若一个直角边是斜边 一半,则这个直角边所对的角是30°)
    ∴∠BAD=60°(直角三角形两锐角互余)
    即∠CAD=∠BAD=30°(角平分线的定义),∠ADC=2∠ADB=60°(菱形的性质)
    所以三角形ADC是直角三角形.
    则由可知:
    本题为综合性的几何证明试题,运用到的重点知识点有,菱形的判定定理,菱形的性质,直角三角形斜边中线定理,30°角定理,勾股定理,注意证明过程中,条理清楚,因果对应,灵活运用才是解题关键.
    25、 (1)见解析;(2)乙组成绩好于甲组,理由见解析
    【解析】
    (1)根据测试成绩表求出乙组成绩为1分和9分的人数,补全统计图,再根据平均数的计算方法和中位数的定义求出平均数和中位数,即可补全分析表;
    (2)根据平均分、方差、中位数、合格率的意义即可写出支持小聪的观点的理由.
    【详解】
    (1)根据测试成绩表即可补全统计图(如图):
    补全分析表:甲组平均分(4×1+5×2+6×5+1×2+8×1+9×4)÷15=6.8,
    乙组中位数是第8个数,是1.
    (2)甲乙两组平均数一样,乙组的方差低于甲组,说明乙组成绩比甲组稳定,又乙组合格率比甲组高,所以乙组成绩好于甲组.
    此题考查频数(率)分布直方图,方差,中位数,加权平均数,解题关键在于掌握中位数和方差的运算公式.
    26、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)w=-100x+2800;当租用甲种客车2辆时,总租车费最少,最少费用为1元.
    【解析】
    (1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,列出方程即可解决问题;
    (2)由题意w=300x+400(7-x)=-100x+2800,列出不等式求出x的取值范围,利用一次函数的性质即可解决问题.
    【详解】
    (1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,
    由题意5x+2(x+100)=2300,
    解得x=300,
    答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.
    (2)由题意w=300x+400(7-x)=-100x+2800,
    又30x+45(7-x)≥275,
    解得x≤,
    ∴x的最大值为2,
    ∵-100<0,
    ∴x=2时,w的值最小,最小值为1.
    答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.
    本题考查一元一次方程的应用、一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会构建一次函数解决最值问题.
    题号





    总分
    得分
    批阅人
    成绩(分)
    4
    5
    6
    7
    8
    9
    甲组(人)
    1
    2
    5
    2
    1
    4
    乙组(人)
    1
    1
    4
    5
    2
    2
    统计量
    平均分
    方差
    中位数
    合格率
    优秀率
    甲组

    2.56
    6
    80.0%
    26.7%
    乙组
    6.8
    1.76

    86.7%
    13.3%
    统计量
    平均分
    方差
    中位数
    合格率
    优秀率
    甲组
    6.8
    2.56
    6
    80.0%
    26.1%
    乙组
    6.8
    1.16
    1
    86.1%
    13.3%

    相关试卷

    浙江省杭州市建兰中学2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】:

    这是一份浙江省杭州市建兰中学2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省杭州市春蕾中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份浙江省杭州市春蕾中学2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    杭州市建兰中学2025届数学九年级第一学期开学质量检测模拟试题【含答案】:

    这是一份杭州市建兰中学2025届数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map