山东省潍坊市名校2025届数学九上开学学业质量监测模拟试题【含答案】
展开
这是一份山东省潍坊市名校2025届数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是( )
A.类比思想B.转化思想C.方程思想D.函数思想
2、(4分)下列说法中,正确的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形
C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形
3、(4分)如图,已知直线y=x与双曲线y= (k>0)交于A,B两点,且点A的横坐标为4.点C是双曲线上一点,且纵坐标为8,则△AOC的面积为( )
A.8B.32C.10D.15
4、(4分)如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是边AB、AD的中点,连接EF,若,,则菱形ABCD的面积为
A.24B.20C.5D.48
5、(4分)如图,在□ABCD中,已知AD=8cm,AB=5cm,AE平分∠BAD交BC边于点E,则EC等于( )
A.1cmB.2cmC.3cmD.4cm
6、(4分)已知点在反比例函数的图象上,则下列点也在该函数图象上的是( )
A.B.C.D.
7、(4分)化简结果正确的是( )
A.xB.1C.D.
8、(4分)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )
A.6B.5C.4D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)矩形的一边长是3.6㎝, 两条对角线的夹角为60º,则矩形对角线长是___________.
10、(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,AE平分∠BAD,AE交BC于E,则∠BOE的大小为______.
11、(4分)有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的不等式组有解的概率为____________;
12、(4分)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东方向.问:小岛C于渔船的航行方向的距离是________________海里(结果可用带根号的数表示).
13、(4分)在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:
(1)写出男生鞋号数据的平均数,中位数,众数;
(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?
15、(8分)甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.
(1)甲、乙两队单独完成此项任务各需多少天?
(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
16、(8分)对于实数a,b,定义运算“⊗”:a⊗b=,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣3x+2=0的两个根,则x1⊗x2等于( )
A.﹣1B.±2C.1D.±1
17、(10分)如图,在中,,平分,交于点,交的延长线于点,交于点.
(1)求证:四边形为菱形;
(2)若,,求的长.
18、(10分)(1)化简 :;
(2)先化简,再求值:;其中 a 2 ,b
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)七边形的内角和是__________.
20、(4分)如图,三个边长均为1的正方形按如图所示的方式摆放,A1,A2分别是正方形对角线的交点,则重叠部分的面积和为______.
21、(4分)化简的结果为___________
22、(4分)关于的方程有两个不相等的实数根,则的取值范围为________.
23、(4分)一元二次方程x2-2x-k=0有两个相等的实数根,则k=________。
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程:
(1)3x(x﹣1)=2﹣2x;
(2)2x2﹣4x﹣1=1.
25、(10分)甲、乙两个工程队需完成A、B两个工地的工程.若甲、乙两个工程队分别可提供40个和50个标准工作量,完成A、B两个工地的工程分别需要70个和20个标准工作量,且两个工程队在A、B两个工地的1个标准工作量的成本如下表所示:
设甲工程队在A工地投入x(20≤x≤40)个标准工作量,完成这两个工程共需成本y元.
(1)求y与x之间的函数关系式;
(2)请判断y是否能等于62000,并说明理由.
26、(12分)A、B 两乡分别由大米 200 吨、300 吨.现将这些大米运至 C、D 两个粮站储存.已知 C 粮站可 储存 240 吨,D 粮站可储存 200 吨,从 A 乡运往 C、D 两处的费用分别为每吨 20 元和 25 元,B 乡 运往 C、D 两处的费用分别为每吨 15 元和 18 元.设 A 乡运往 C 粮站大米 x 吨.A、B 两乡运往两 个粮站的运费分别为 yA、yB 元.
(1)请填写下表,并求出 yA、yB 与 x 的关系式:
(2)试讨论 A、B 乡中,哪一个的运费较少;
(3)若 B 乡比较困难,最多只能承受 4830 元费用,这种情况下,运输方案如何确定才能使总运费 最少?最少的费用是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
分式方程去分母转化为整式方程,故利用的数学思想是转化思想.
【详解】
解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是转化思想.
故选B.
此题考查了解分式方程,熟练掌握运算法则是解本题的关键.
2、C
【解析】
根据平行四边形、矩形、正方形、菱形的判定方法以及定义即可作出判断.
【详解】
解:一组对边平行且相等的四边形是平行四边形,故A错误;
对角线相等的平行四边形是矩形,故B错误;
有一组邻边相等的矩形是正方形,故C正确;
对角线互相垂直平分的四边形是菱形或对角线互相垂直的平行四边形是菱形,故D错误;
故本题答案应为:C.
平行四边形、矩形、正方形、菱形的判定方法以及定义是本题的考点,熟练掌握其判定方法是解题的关键.
3、D
【解析】
点A的横坐标为4,将x=4代入y= x,得y=2.
∴点A的坐标为(4,2).
∵点A是直线y=x与双曲线y=(k>0)的交点,
∴k=4×2=8,即y=.
将y=8代入y=中,得x=1.
∴点C的坐标为(1,8).
如图,过点A作x轴的垂线,过点C作y轴的垂线,垂足分别为M,N,且AM,CN的反向延长线交于点D,得长方形DMON.
易得S长方形DMON=32,S△ONC=4,
S△CDA=9,S△OAM=4.
∴S△AOC=S长方形DMON-S△ONC-S△CDA-S△OAM=32-4-9-4=15.
4、A
【解析】
根据EF是的中位线,根据三角形中位线定理求的BD的长,然后根据菱形的面积公式求解.
【详解】
解:、F分别是AB,AD边上的中点,即EF是的中位线,
,
则.
故选A.
本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的BD的长是关键.
5、C
【解析】
根据在□ABCD中,AE平分∠BAD,得到∠BAE=∠AEB,即AB=BE,即可求出EC的长度.
【详解】
∵在□ABCD中,AE平分∠BAD,
∴∠DAE=∠BAE,∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∵AD=8cm,AB=5cm,
∴BE=5cm,BC=8cm,
∴CE=8-5=3cm,
故选C.
本题是对平行四边形知识的考查,熟练掌握平行四边形性质及角平分线知识是解决本题的关键.
6、D
【解析】
先把点(2,3)代入反比例函数,求出k的值,再根据k=xy为定值对各选项进行逐一检验即可.
【详解】
∵点(2,−3)在反比例函数的图象上,
∴k=2×(−3)=-1.
A、∵1×5=5≠−1,∴此点不在函数图象上;
B、∵-1×5=-5=−1,∴此点不在函数图象上;
C、∵3×2=1≠−1,∴此点不在函数图象上;
D、∵(−2)×3=-1,∴此点在函数图象上.
故选:D.
本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
7、B
【解析】
根据分式的加减法法则计算即可得出正确选项.
【详解】
解:=.
故选:B.
本题主要考查了分式的加减,同分母分式相加减,分母不变,分子相加减.
8、D
【解析】
根据线段垂直平分线上的点到线段两端点的距离相等可得AB的垂直平分线与直线y=x的交点为点C1,即可求得C的坐标,再求出AB的长,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,过点B作BD⊥直线y=x,垂足为D,则△OBD是等腰直角三角形,根据勾股定理求出点B到直线y=x的距离为,由>4,可知以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,据此即可求得答案.
【详解】
如图,AB的垂直平分线与直线y=x相交于点C1,
∵A(0,2),B(0,6),∴AB=6﹣2=4,
以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,
过点B作BD⊥直线y=x,垂足为D,则△OBD是等腰直角三角形,
∴BD=OD,
∵OB=6,BD2+OD2=OB2,
∴BD=,
即点B到直线y=x的距离为,
∵>4,
∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,
综上所述,点C的个数是1+2=3,
故选D.
本题考查了等腰三角形的判定,坐标与图形性质,勾股定理的应用,作出图形,利用数形结合的思想求解更形象直观.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、7.2cm或cm
【解析】
①边长3.6cm为短边时,
∵四边形ABCD为矩形,
∴OA=OB,
∵两对角线的夹角为60°,
∴△AOB为等边三角形,
∴OA=OB=AB=3.6cm,
∴AC=BD=2OA=7.2cm;
②边长3.6cm为长边时,
∵四边形ABCD为矩形
∴OA=OB,
∵两对角线的夹角为60°,
∴△AOB为等边三角形,
∴OA=OB=AB,BD=2OB,∠ABD=60°,
∴OB=AB= ,
∴BD=;
故答案是:7.2cm或cm.
10、
【解析】
由矩形的性质得出∠BAD=∠ABC=90°,OA=OB,证明△AOB是等边三角形,得出AB=OB,∠ABO=60°,证出△ABE是等腰直角三角形,得出AB=BE,因此BE=OB,由等腰三角形的性质即可得出∠BOE的大小.
【详解】
解:∵四边形ABCD是矩形,
∴∠BAD=∠ABC=90°,OA=AC,OB=BD,AC=BD,
∴OA=OB,
∵∠ABO=60°,
∴△AOB是等边三角形,
∴AB=OB,∠ABO=60°,
∴∠OBE=30°,
∵AE平分∠BAD,
∴∠BAE=45°,
∴△ABE是等腰直角三角形,
∴AB=BE,
∴BE=OB,
∴∠BOE=(180°-∠OBE)= (180°-30°)=75°.
故答案为75°.
本题考查了矩形的性质,等边三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形的性质.熟练掌握矩形的性质,并能进行推理计算是解题的关键.
11、
【解析】
首先确定不等式的解,然后根据有确定a的取值范围,再利用概率公式求解即可.
解:解关于x不等式得,
∵关于x不等式有实数解,
∴
解得a
相关试卷
这是一份山东省菏泽市名校2024-2025学年数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份辽宁省大连市名校2025届九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届浙江省台州市名校九上数学开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。