终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    山东省德州市乐陵市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】

    立即下载
    加入资料篮
    山东省德州市乐陵市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】第1页
    山东省德州市乐陵市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】第2页
    山东省德州市乐陵市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省德州市乐陵市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】

    展开

    这是一份山东省德州市乐陵市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)向一容器内均匀注水,最后把容器注满在注水过程中,容器的水面高度与时间的关系如图所示,图中PQ为一线段,则这个容器是( )
    A.B.C.D.
    2、(4分)下列图形中既是轴对称图形又是中心对称图形的是( )
    A.等腰三角形B.平行四边形C.正五边形D.正十边形
    3、(4分)如图,在菱形中,,点、分别为、上的动点,,点从点向点运动的过程中,的长度( )
    A.逐渐增加B.逐渐减小
    C.保持不变且与的长度相等D.保持不变且与的长度相等
    4、(4分)如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
    A.12B.16C.20D.24
    5、(4分)函数y=中,自变量x的取值范围是( )
    A.x且x≠1B.x且x≠1C.x且x≠1D.x且x≠1
    6、(4分)小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是( )
    A.B.C.D.
    7、(4分)关于直线l:y=kx+k(k≠0),下列说法不正确的是( )
    A.点(0,k)在l上
    B.l经过定点(-1,0)
    C.当k>0时,y随x的增大而增大
    D.l经过第一、二、三象限
    8、(4分)如果分式有意义,那么的取值范围是( )
    A.B.
    C.D.或
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系xOy中,直线与x轴的交点为A,与y轴的交点为B,且,则k的值为_____________.
    10、(4分)如图,在中,,,,点为的中点,在边上取点,使.绕点旋转,得到(点、分别与点、对应),当时,则___________.
    11、(4分)如图,正方形的边长为4,在这个正方形内作等边三角形(三角形的顶点可以在正方形的边上),使它们的中心重合,则的顶点到正方形的顶点的最短距离是___________.
    12、(4分)如图,点B、C分别在直线y=2x和直线y=kx上,A、D是x轴上两点,若四边形ABCD为矩形,且AB:AD=1:2,则k的值是_____.
    13、(4分)若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为______cm.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某工厂车间为了了解工人日均生产能力的情况,随机抽取10名工人进行测试,将获得数据制成如下统计图.
    (1)求这10名工人的日均生产件数的平均数、众数、中位数;
    (2)若日均生产件数不低于12件为优秀等级,该工厂车间共有工人120人,估计日均生产能力为“优秀”等级的工人约为多少人?
    15、(8分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6 cm,AC=10 cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).
    (1)求证:四边形ACFD是平行四边形.
    (2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?
    (3)将Rt△ABC向左平移4 cm,求四边形DHCF的面积.
    16、(8分)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.
    17、(10分)某蛋糕店为了吸引顾客,在A、B两种蛋糕中,轮流降低其中一种蛋糕价格,这样形成两种盈利模式,模式一:A种蛋糕利润每盒8元,B种蛋糕利润每盒15元;模式二:A种蛋糕利润每盒14元,B种蛋糕利润每盒11元每天限定销售A、B两种蛋糕共40盒,且都能售完,设每天销售A种蛋糕x盒
    (1)设按模式一销售A、B两种蛋糕所获利润为y1元,按模式二销售A、B两种蛋糕所获利润为y2元,分别求出y1、y2关于x的函数解析式;
    (2)在同一个坐标系内分别画出(1)题中的两个函数的图象;
    (3)若y始终表示y1、y2中较大的值,请问y是否为x的函数,并说说你的理由,并直接写出y的最小值.
    18、(10分)如图,在平行四边形中,,是中点,在延长线上,连接相交于点.
    (1)若,求平行四边形的面积;
    (2)若,求证:.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.
    20、(4分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.
    21、(4分)将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为 .
    22、(4分)某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.
    23、(4分)把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为_________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解一元二次方程:(1);(2).
    25、(10分) (1)解不等式组: (2)解方程:.
    26、(12分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
    (1)求证:OP=OQ;
    (2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    观察图象,开始上升缓慢,最后匀速上升,再针对每个容器的特点,选择合适的答案解答即可.
    【详解】
    根据图象,水面高度增加的先逐渐变快,再匀速增加;
    故容器从下到上,应逐渐变小,最后均匀.
    故选C.
    此题考查函数的图象,解题关键在于结合实际运用函数的图像.
    2、D
    【解析】
    根据轴对称图形和中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形.故错误;
    B、不是轴对称图形,是中心对称图形.故错误;
    C、是轴对称图形,不是中心对称图形.故错误;
    D、是轴对称图形,也是中心对称图形.故正确.
    故选:D.
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    3、D
    【解析】
    【分析】如图,连接BD,由菱形的性质以及∠A=60°,可得△BCD是等边三角形,从而可得BD=BC,再通过证明△BCF≌BDE,从而可得CF=DE,继而可得到AE+CF=AB,由此即可作出判断.
    【详解】如图,连接BD,
    ∵四边形ABCD是菱形,∠A=60°,
    ∴CD=BC,∠C=∠A=60°,∠ABC=∠ADC==120°,
    ∴∠4=∠DBC=60°,
    ∴△BCD是等边三角形,
    ∴BD=BC,
    ∵∠2+∠3=∠EBF=60°,∠1+∠2=∠DBC=60°,
    ∴∠1=∠3,
    在△BCF和△BDE中,

    ∴△BCF≌BDE,
    ∴CF=DE,
    ∵AE+DE=AB,
    ∴AE+CF=AB,
    故选D.
    【点睛】本题考查了菱形的性质,全等三角形的判定与性质,熟练掌握相关的定理与性质是解题的关键.
    4、D
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
    【详解】
    、分别是、的中点,
    是的中位线,

    菱形的周长.
    故选:.
    本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    5、B
    【解析】
    根据二次根式的被开方数为非负数且分母不为0,列出不等式组,即可求x的范围.
    【详解】
    2x﹣1≥0且x﹣1≠0,解得x≥且x≠1,故选B.
    考查自变量的取值范围,掌握二次根式的被开方数为非负数且分母不为0是解题的关键.
    6、A
    【解析】
    设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.
    【详解】
    设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,
    由题意得:,
    故选A.
    本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.
    7、D
    【解析】
    A.当x=0时,y=k,即点(0,k)在l上,故此选项正确;
    B.当x=﹣1时,y=﹣k+k=0,此选项正确;
    C.当k>0时,y随x的增大而增大,此选项正确;
    D.不能确定l经过第一、二、三象限,此选项错误;
    故选D.
    8、C
    【解析】
    分式有意义,则分式的分母不为0,可得关于x的不等式,解不等式即得答案.
    【详解】
    解:要使分式有意义,则x+1≠0,解得,故选C.
    本题考查了分式有意义的条件,属于基础题型,分式的分母不为0是分式有意义的前提条件.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    先根据解析式确定点A、B的坐标,再根据三角形的面积公式计算得出答案.
    【详解】
    令中y=0得x=-,令x=0得y=2,
    ∴点A(-,0),点B(0,2),
    ∴OA=,OB=2,
    ∵,
    ∴,
    解得k=,
    故答案为:.
    此题考查一次函数图象与坐标轴的交点,一次函数与几何图形面积,正确理解OA、OB的长度是解题的关键.
    10、2或4
    【解析】
    根据题意分两种情况,分别画出图形,证明△是等边三角形,根据直角三角形的性质求出OD,即可得到答案.
    【详解】
    若绕点D顺时针旋转△AED得到△,连接,
    ∵,,
    ∴∠A=30°,
    ∵,
    ∴AB=4,
    ∵点D是AB的中点,
    ∴AD=2,
    ∵,
    ∴AD==2,∠=60°,
    ∴△是等边三角形,
    ∴=,∠D=60°,且∠EAD=30°,
    ∴AE平分∠D,
    ∴AE是的垂直平分线,
    ∴OD=AD=,
    ∵AE=DE,
    ∴∠EAD=∠EDA=30°,
    ∴DE,
    ∴2;
    若绕点D顺时针旋转△AED得到△,
    同理可求=4,
    故答案为:2或4.
    此题考查旋转的性质,直角三角形30°角所对的直角边等于斜边一半的性质,等边三角形的判定及性质,三角函数.
    11、
    【解析】
    当G,O,C共线时,△EFG的顶点到正方形ABCD的顶点的最短,即点G在对角线上,在△AOE中,∠CAE=45°,∠AOE=60°,OE=r,解三角形可求r,即可求最短距离.
    【详解】
    如图:当G,O,C共线时,△EFG的顶点到正方形ABCD的顶点的最短,即点G在对角线上.
    作EM⊥AC于M
    ∵ABCD是正方形,AB=4
    ∴AC=,AO=,∠CAB=45°
    ∵△EFG是等边三角形
    ∴∠GOE=120°
    ∴∠AOE=60°
    设OE为r
    ∵∠AOE=60°,ME⊥AO
    ∴MO=OE=r,ME=MO=r
    ∵∠MAE=45°,AM⊥ME
    ∴∠MAE=∠MEA=45°,
    ∴AM=ME=r,
    ∵AM+MO=AO
    ∴r+r=
    ∴r=
    ∵AG=AM=MO+OG=r+r+r=
    ∴GC=
    故答案为:.
    本题主要考查了两点间距离最短,由题意分析出距离最短的情况是解题的关键.
    12、
    【解析】
    根据矩形的性质可设点A的坐标为(a,0),再根据点B、C分别在直线y=2x和直线y=kx上,可得点B、C、D的坐标,再由AB:AD=1:2,求得k的值即可.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴设点A的坐标为(a,0)(a>0),则点B的坐标为(a,2a),点C的坐标为(a,2a),点D的坐标为(a,0),
    ∴AB=2a,AD=(﹣1)a.
    ∵AB:AD=1:2,
    ∴﹣1=2×2,
    ∴k=.
    故答案为:.
    一次函数在几何图形中的实际应用是本题的考点,熟练掌握矩形的性质是解题的关键.
    13、1
    【解析】
    根据等腰三角形的性质先求出BD,然后在Rt△ABD中,可根据勾股定理进行求解.
    【详解】
    解:如图:
    由题意得:AB=AC=10cm,BC=11cm,
    作AD⊥BC于点D,则有DB=BC=8cm,
    在Rt△ABD中,AD==1cm.
    故答案为1.
    本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理求直角三角形的边长.
    三、解答题(本大题共5个小题,共48分)
    14、(1)平均数为11,众数为13,中位数为12.(2)优秀等级的工人约为72人.
    【解析】
    (1)根据平均数加工零件总数总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数中出现次数最多的数据,分别进行解答即可得出答案;
    (2)用样本的平均数估计总体的平均数即可.
    【详解】
    (1)由统计图可得,
    平均数为:(件),
    出现了4次,出现的次数最多,
    众数是件,
    把这些数从小到大排列为:,,,,,,,,,,最中间的数是第5、6个数的平均数,
    则中位数是(件);
    (2)(人)
    答:优秀等级的工人约为72人.
    本题考查统计量的选择,平均数、中位数和众数,解题的关键是明确题意,找出所求问题需要的条件.
    15、(1)见解析;(2)将Rt△ABC向左(或右)平移2 cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)
    【解析】
    (1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24 cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2 cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积,即可解题.
    【详解】
    (1)证明:∵四边形ACFD是由Rt△ABC平移形成的,
    ∴AD∥CF,AC∥DF.
    ∴四边形ACFD为平行四边形.
    (2)解:由题易得BC==8(cm),△ABC的面积=24 cm2.
    要使得四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2 cm,
    ∴将Rt△ABC向左(或右)平移2 cm,可使四边形ACFD的面积等于△ABC的面积的一半.
    (3)解:将Rt△ABC向左平移4 cm,
    则BE=AD=4 cm.
    又∵BC=8 cm,∴CE=4 cm=AD.
    由(1)知四边形ACFD是平行四边形,
    ∴AD∥BF.
    ∴∠HAD=∠HCE.
    又∵∠DHA=∠EHC,
    ∴△DHA≌△EHC(AAS).
    ∴DH=HE=DE=AB=3 cm.
    ∴S△HEC=HE·EC=6 cm2.
    ∵△ABC≌△DEF,
    ∴S△ABC=SDEF.
    由(2)知S△ABC=24 cm2,
    ∴S△DEF=24 cm2.
    ∴四边形DHCF的面积为S△DEF-S△HEC=24-6=18(cm2).
    本题考查平行四边形的判定、三角形面积和平行四边形面积的计算,还考查了全等三角形的判定、中位线定理,考查了勾股定理在直角三角形中的运用,本题中求△CEH的面积是解题的关键.
    16、2.
    【解析】
    试题分析:延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF,然后求解即可.
    试题解析:如图,延长BD交AC于点F,
    ∵AD平分∠BAC,
    ∴∠BAD=∠CAD.
    ∵BD⊥AD,∴∠ADB=∠ADF,
    又∵AD=AD,
    ∴△ADB≌△ADF(ASA).
    ∴AF=AB=6,BD=FD.
    ∵AC=10,∴CF=AC-AF=10-6=4.
    ∵E为BC的中点,∴DE是△BCF的中位线.
    ∴DE=CF=×4=2.
    17、(1)y1==-7x+600,y2==3x+440 (2)答案见解析 (3)答案见解析
    【解析】
    (1)根据两种盈利模式,分别列出y1、y2关于x的函数解析式;
    (2)利用描点法画出两函数图像;
    (3)由y1=y2,建立关于x的方程,解方程求出x的值,就可得到两函数的交点坐标,再利用一次函数的性质,就可得出当0≤x≤40时,y1随x的增大而增大,y2随x的增大而减小,可得到每一个自变量x都有唯一的一个y的值与之对应,由此可得出判断.
    【详解】
    (1)解: 由题意得:
    y1=8x+15(40-x)=-7x+600,
    y2=14x+11(40-x)=3x+440 ;
    (2)解: 如图,
    (3)解: 当y1=y2时,-7x+600=3x+440
    解之:x=16
    ∴x=16时,y=3×16+440=488
    当0≤x≤40时,y1随x的增大而增大,y2随x的增大而减小,

    ∴每一个自变量x都有唯一的一个y的值与之对应,
    ∴y是x的函数,当x=16时,y的最小值为488.
    本题主要考查一次函数的应用,根据题意列出函数关系式并能熟练掌握一次函数的性质是解答本题的关键.
    18、(1)18;(2)见解析
    【解析】
    (1)过点A作AH⊥BC于H,由AC=BC,∠ABC=75°,得出∠ACB=30°,则AH=AC=BC=3,S平行四边形ABCD=2S△ABC=2×BC•AH,即可得出结果;
    (2)过点A作AN∥CE,交BG于N,则∠ECA=∠CAN,由E是AB中点得出EF是△ABN的中位线,则EF=AN,证明∠GBC=∠ECA,∠GBC=∠G,∠ACB=∠CAG得出∠ECB=∠ECA=∠CAN=∠GAN,推出∠GAN=∠G,则AN=GN,由平行线的性质得出==1,得出BF=FN,即可得出结论.
    【详解】
    (1)解:作,垂足为,则
    ∵,
    ∴ ,
    ∴,
    ∴;
    (2)过点A作AN∥CE,交BG于N,如图2所示:
    则∠ECA=∠CAN,
    ∵E是AB中点,
    ∴EF是△ABN的中位线,
    ∴EF=AN,
    ∵AC=BC,E是AB中点,
    ∴∠ECB=∠ECA,
    ∵∠GBC=∠ECB,
    ∴∠GBC=∠ECA,
    ∵四边形ABCD是平行四边形,
    ∴BC∥AD,
    ∴∠GBC=∠G,∠ACB=∠CAG,
    ∴∠ECB=∠ECA=∠CAN=∠GAN,
    ∴∠GAN=∠G,
    ∴AN=GN,
    ∵EF∥AN,

    ∴BF=FN,
    ∴GF=GN+FN=AN+BF,
    ∴GF=BF+2EF.
    考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质、全等三角形的判定与性质、三角形中位线的判定与性质、平行四边形与三角形面积的计算等知识,熟练掌握平行四边形的性质、构建三角形中位线、证明等腰三角形是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2或.
    【解析】
    分别从当Q运动到E和B之间与当Q运动到E和C之间去分析, 根据平行四边形的性质, 可得方程, 继而可求得答案.
    【详解】
    解:E是BC的中点,
    BE=CE=BC=12=6,
    ①当Q运动到E和C之间, 设运动时间为t, 则AP=t, DP=AD-AP=4-t, CQ=2t,EQ=CE-CQ=6-2t
    t=6-2t,
    解得: t=2;
    ②当Q运动到E和B之间,设运动时间为t,则AP=t, DP=AD-AP=4-t, CQ=2t,
    EQ=CQ-CE=2t-6,
    t=2t-6,
    解得: t=6(舍),
    ③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,
    则AP=4-(t-4)=8-t, EQ=2t-6,
    8-t=2t-6,,
    当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.
    故答案为: 2或.
    本题主要考查平行四边形的性质及解一元一次方程.
    20、1
    【解析】
    利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.
    【详解】
    解:x2-5x+4=0,
    (x-1)(x-4)=0,
    所以x1=1,x2=4,
    当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;
    当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.
    故答案是:1.
    本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.
    21、 (-1,1).
    【解析】
    解:过点A作AC⊥x轴于点C,过点A′作A′D⊥x轴,
    因为ΔOAB是等腰直角三角形,所以有OC=BC=AC=1,
    ∠AOB=∠AOB′=45°,
    则点A的坐标是(1,1),
    OA=,又∠A′OB′=45°,
    所以∠A′OD=45°,OA′=,
    在RtΔA′OD中,cs∠A′OD= ,
    所以OD=1,A′D=1,所以点A′的坐标是(-1,1).
    考点:1、旋转的性质;2、等腰三角形的性质.
    22、90
    【解析】
    试题分析:设物理得x分,则95×60%+40%x=93,截得:x=90.
    考点:加权平均数的运用
    23、y=-2x+1
    【解析】
    试题分析:由题意得:平移后的解析式为:y=﹣2x+1+2=﹣2x+1.
    故答案是y=﹣2x+1.
    考点:一次函数图象与几何变换.
    二、解答题(本大题共3个小题,共30分)
    24、(1), ;(2)或
    【解析】
    (1)先变形为4x(2x-1)+2x-1=0,然后利用因式分解法解方程;
    (2) 先把方程化为一般式,然后利用求根公式法解方程;
    【详解】
    解:(1)4x(2x-1)+2x-1=0,
    (2x-1)(4x+1)=0,
    2x-1=0或4x+1=0,
    所以,;
    (2).
    3x2-5x-2=0,
    △=(-5)2-4×3×(-2)=49,
    所以或;
    本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
    25、 (1);(2)无解.
    【解析】
    (1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1)由①得:,
    由②得:,
    则不等式组的解集为;
    (2)去分母得:,
    解得:,
    经检验是增根,分式方程无解.
    此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    26、(1)证明见解析(2)
    【解析】
    试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
    (2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
    试题解析:(1)证明:因为四边形ABCD是矩形,
    所以AD∥BC,
    所以∠PDO=∠QBO,
    又因为O为BD的中点,
    所以OB=OD,
    在△POD与△QOB中,
    ∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
    所以△POD≌△QOB,
    所以OP=OQ.
    (2)解:PD=8-t,
    因为四边形PBQD是菱形,
    所以PD=BP=8-t,
    因为四边形ABCD是矩形,
    所以∠A=90°,
    在Rt△ABP中,
    由勾股定理得:,
    即,
    解得:t=,
    即运动时间为秒时,四边形PBQD是菱形.
    考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
    题号





    总分
    得分

    相关试卷

    2025届山东省德州市第五中学九年级数学第一学期开学复习检测模拟试题【含答案】:

    这是一份2025届山东省德州市第五中学九年级数学第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省德州市宁津县数学九年级第一学期开学复习检测模拟试题【含答案】:

    这是一份2024年山东省德州市宁津县数学九年级第一学期开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省德州市夏津实验中学数学九上开学检测模拟试题【含答案】:

    这是一份2024-2025学年山东省德州市夏津实验中学数学九上开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map