终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    宁夏银川市名校2024年数学九上开学质量检测试题【含答案】

    立即下载
    加入资料篮
    宁夏银川市名校2024年数学九上开学质量检测试题【含答案】第1页
    宁夏银川市名校2024年数学九上开学质量检测试题【含答案】第2页
    宁夏银川市名校2024年数学九上开学质量检测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    宁夏银川市名校2024年数学九上开学质量检测试题【含答案】

    展开

    这是一份宁夏银川市名校2024年数学九上开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是( )
    A.2:7:2:7B.2:2:7:7C.2:7:7:2D.2:3:4:5
    2、(4分)某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1100m,则隧道AB的长度为( )
    A.3300mB.2200mC.1100mD.550m
    3、(4分)如图,将ABC绕点A顺时针旋转70°后,得到ADE,下列说法正确的是( )
    A.点B的对应点是点EB.∠CAD=70°C.AB=DED.∠B=∠D
    4、(4分)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有( )
    A.2个B.3个C.4个D.5个
    5、(4分)如图,中俄“海上联合—2017”军事演习在海上编队演习中,两艘航母护卫舰从同一港口O同时出发,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时速度航行,离开港口1.5小时后它们分别到达A,B两点,相距30海里,则二号舰航行的方向是( )

    A.南偏东30°B.北偏东30°C.南偏东 60°D.南偏西 60°
    6、(4分)一鞋店试销一种新款女鞋,试销期间卖出情况如表:
    对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是( )
    A.平均数B.众数C.中位数D.方差
    7、(4分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )
    A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米
    8、(4分)小强同学投掷 30 次实心球的成绩如下表所示:
    由上表可知小强同学投掷 30 次实心球成绩的众数与中位数分别是( )
    A.12m,11.9mB.12m,12.1mC.12.1m,11.9mD.12.1m,12m
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若y与x的函数关系式为y=2x-2,当x=2时,y的值为_______.
    10、(4分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=_____.
    11、(4分)如图,小军在地面上合适的位置平放了一块平面镜(平面镜的高度忽略不计),刚好在平面镜中的点处看到旗杆顶部,此时小军的站立点与点的水平距离为,旗杆底部与点的水平距离为.若小军的眼睛距离地面的高度为(即),则旗杆的高度为_____.
    12、(4分)一个装有进水管出水管的容器,从某时刻起只打开进水管进水,经过一段时间,在打开出水管放水,至15分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(升)与时间x(分钟)之间的关系如图所示,关停进水管后,经过_____________分钟,容器中的水恰好放完.
    13、(4分)若正多边形的一个外角等于36°,那么这个正多边形的边数是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)探究:如图1,在△ABC中,AB=AC,CF为AB边上的高,点P为BC边上任意一点,PD⊥AB,PE⊥AC,垂足分别为点D,E.求证:PD+PE=CF.
    嘉嘉的证明思路:连结AP,借助△ABP与△ACP的面积和等于△ABC的面积来证明结论.
    淇淇的证明思路:过点P作PG⊥CF于G,可证得PD=GF,PE=CG,则PD+PE=CF.
    迁移:请参考嘉嘉或淇淇的证明思路,完成下面的问题:
    (1)如图1.当点P在BC延长线上时,其余条件不变,上面的结论还成立吗?若不成立,又存在怎样的关系?请说明理由;
    (1)当点P在CB延长线上时,其余条件不变,请直接写出线段PD,PE和CF之间的数量关系.
    运用:如图3,将矩形ABCD沿EF折叠,使点D落在点B处,点C落在点C′处.若点P为折痕EF上任一点,PG⊥BE于G,PH⊥BC于H,若AD=18,CF=5,直接写出PG+PH的值.
    15、(8分)解不等式3(x﹣1)≥5(x﹣3)+6,并求出它的正整数解.
    16、(8分)已知:如图平行四边形中,,且,过作于,点是的中点,连接交于点,点是的中点,过作交的延长线于.
    (1)若,求的长.(2)求证:.
    17、(10分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:
    (1) (2)
    18、(10分)计算:
    (1)-2
    (2)(-)•(+)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.
    20、(4分)当x_____时,分式有意义.
    21、(4分)一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________。
    22、(4分)如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.
    23、(4分)若点P(-2,2)是正比例函数y=kx(k≠0)图象上的点,则此正比例函数的解析式为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)王先生准备采购一批(大于100条)某种品牌的跳绳,采购跳绳有在实体店和网店购买两种方式,通过洽谈,获得了以下信息:
    (1)请分别写出王先生在实体店、网店购买跳绳所需的资金y1、y2元与购买的跳绳数x(x>100)条之间的函数关系式;
    (2)王先生选取哪种方式购买跳绳省钱?
    25、(10分)如图,平行四边形中,,点、分别在、的延长线上,,,垂足为点,.
    (1)求证:是中点;
    (2)求的长.
    26、(12分)随着改革开放进程的推进,改变的不仅仅是人们的购物模式,就连支付方式也在时代的浪潮中发生着天翻地覆的改变,除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可求得答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠A=∠C,∠B=∠D,
    ∴∠A:∠B:∠C:∠D的可能情况是2:1:2:1.
    故选:A.
    此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.
    2、B
    【解析】
    ∵D,E为AC和BC的中点,
    ∴AB=2DE=2200m,
    故选:B.
    3、D
    【解析】
    根据旋转的性质逐项判断即得答案.
    【详解】
    解:因为将△ABC绕点A顺时针旋转70°后,得到△ADE,所以:
    A、点B的对应点是点D,不是点E,故本选项说法错误,不符合题意;
    B、∠CAD不是旋转角,不等于70°,故本选项说法错误,不符合题意;
    C、AB=AD≠DE,故本选项说法错误,不符合题意;
    D、∠B=∠D,故本选项说法正确,符合题意.
    故选:D.
    本题考查了旋转的性质,属于基础题型,熟练掌握旋转的性质是关键.
    4、B
    【解析】
    根据平行四边形的性质可得AD//BC,AD=BC,根据平行线的性质可得∠BEA=∠EAD,根据等腰三角形的性质可得∠ABE=∠BEA,即可证明∠EAD=∠ABE,利用SAS可证明△ABC≌△EAD;可得①正确;由角平分线的定义可得∠BAE=∠EAD,即可证明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正确;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正确;题中③和④不正确.综上即可得答案.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴∠BEA=∠EAD,
    ∵AB=AE,
    ∴∠ABE=∠BEA,
    ∴∠EAD=∠ABE,
    在△ABC和△EAD中,,
    ∴△ABC≌△EAD(SAS);故①正确;
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∴∠ABE=∠BEA=∠BAE,
    ∴∠BAE=∠BEA,
    ∴AB=BE=AE,
    ∴△ABE是等边三角形;②正确;
    ∴∠ABE=∠EAD=60°,
    ∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
    ∴S△FCD=S△ABC,
    ∵△AEC与△DEC同底等高,
    ∴S△AEC=S△DEC,
    ∴S△ABE=S△CEF;⑤正确.
    若AD=BF,则BF=BC,题中未限定这一条件,
    ∴③不一定正确;
    如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,
    ∵△ABE是等边三角形,
    ∴AG=EH,
    若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,
    ∴④不一定正确;
    综上所述:正确的有①②⑤.
    故选:B.
    本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.
    5、C
    【解析】
    【分析】由题意可知OA=18,OB=24,AB=30,由勾股定理逆定理可知∠AOB=90°,结合方位角即可确定出二号舰的航行方向.
    【详解】如图,由题意得:OA=12×1.5=18,OB=16×1.5=24,
    ∵AB=30,
    ∴OA2+OB2=182+242=900=302=AB2,
    ∴∠AOB=90°,
    ∵∠AOC=30°,
    ∴∠BOC=∠AOB-∠AOC=60°,
    ∴二号舰航行的方向是南偏东 60°,
    故选C.
    【点睛】本题考查了方位角、勾股定理逆定理,熟练掌握勾股定理逆定理是解本题的关键.
    6、B
    【解析】
    众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
    【详解】
    解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.
    故选B.
    7、A
    【解析】
    分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.
    详解:∵52+122=132,
    ∴三条边长分别为5里,12里,13里,构成了直角三角形,
    ∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).
    故选:A.
    点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.
    8、D
    【解析】
    根据众数和中位数的定义分别进行判断即得答案.
    【详解】
    解:由表可知:12.1出现了10次,出现的次数最多,所以小强同学投掷 30 次实心球成绩的众数是12.1m,把这些数从小到大排列,最中间的第15、16个数是12、12,则中位数是(m),故选D.
    本题考查众数和中位数的概念,众数是指一组数据中出现次数最多的数据,而中位数是指将一组数据按从小(大)到大(小)的顺序排列起来,位于最中间的数(或最中间两个数的平均数). 具体判断时,切勿将表中的“成绩”与“频数”混淆,从而做出错误判断.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    将x=2代入函数解析式可得出y的值.
    【详解】
    由题意得:
    y=2×2−2=2.
    故答案为:2.
    此题考查函数值,解题关键在于将x的值代入解析式.
    10、1.
    【解析】
    试题分析:利用平均数的定义,列出方程即可求解.
    解:由题意知,3,a,4,6,7的平均数是1,
    则=1,
    ∴a=21﹣3﹣4﹣6﹣7=1.
    故答案为1.
    点评:本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.
    11、1
    【解析】
    分析:根据题意容易得到△CDE∽△CBA,再根据相似三角形的性质解答即可.
    详解:由题意可得:AB=1.5m,BC=2m,DC=12m,
    △ABC∽△EDC,
    则,
    即,
    解得:DE=1,
    故答案为1.
    点睛:本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程.
    12、13.5
    【解析】
    从图形中可得前6分钟只进水,此时可计算出进水管的速度,从第6分到第15分既进水又出水,且进水速度大于出水速度, 根据此时进水的速度=进水管的速度-出水管的速度即可计算出出水管的出水速度,即可解答
    【详解】
    从图形可以看出
    进水管的速度为:60÷6=10(升/分),
    出水管的速度为:10-(90-60)÷(15-6)= (升/分),
    关闭进水管后,放水经过的时间为:90÷=13.5(分).
    此题考查一次函数的应用,函数图象,解题关键在于看懂图象中的数据
    13、十
    【解析】
    根据正多边形的外角和为360°,除以每个外角的度数即可知.
    【详解】
    解:∵正多边形的外角和为360°,
    ∴正多边形的边数为,
    故答案为:十.
    本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.
    三、解答题(本大题共5个小题,共48分)
    14、(1)不成立,CF=PD-PE,理由见解析;(1)CF=PE-PD理由见解析;运用:PG+PH的值为11.
    【解析】
    (1)由三角形的面积和差关系可求解;
    (1)由三角形的面积和差关系可求解;
    (3)易证BE=BF,过点E作EQ⊥BF,垂足为Q,利用探究中的结论可得PG+PH=EQ,易证EQ=AB,BF=BE=DE=3,只需求出AB即可.
    【详解】
    解:(1)不成立,CF=PD-PE
    理由如下:
    连接AP,如图,
    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    且S△ABC=S△ABP-S△ACP,
    ∴AB•CF=AB•PD-AC•PE.
    ∵AB=AC,
    ∴CF=PD-PE.
    (1)CF=PE-PD
    理由如下:
    如图,
    ∵S△ABC=S△ACP-S△ABP,
    ∴AB•CF=AC•PE-AB•PD
    ∵AB=AC
    ∴CF=PE-PD
    运用:过点E作EQ⊥BC,垂足为Q,如图,
    ∵四边形ABCD是矩形,
    ∴AD=BC,AD∥BC,∠A=∠ABC=90°.
    ∵AD=18,CF=5,
    ∴BF=BC-CF=AD-CF=3.
    由折叠可得:DE=BB,∠BEF=∠DEF.
    ∵AD∥BC
    ∴∠DEF=∠EFB
    ∴∠BEF=∠BFE
    ∴BE=BF=3=DE
    ∴AE=5
    ∵∠A=90°,
    ∴AB==11
    ∵EQ⊥BC,∠A=∠ABC=90°.
    ∴∠EQC=90°=∠A=∠ABC
    ∴四边形EQBA是矩形.
    ∴EQ=AB=11.
    由探究的结论可得:PG+PH=EQ.
    ∴PG+PH=11.
    ∴PG+PH的值为11.
    故答案为:(1)不成立,CF=PD-PE,理由见解析;(1)CF=PE-PD理由见解析;运用:PG+PH的值为11.
    本题考查矩形的性质与判定、等腰三角形的性质与判定、全等三角形的性质与判定、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.
    15、它的正整数解为:1,2,1.
    【解析】
    首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数解即可.
    【详解】
    1(x﹣1)≥5(x﹣1)+6
    1x﹣1≥5x﹣15+6,
    1x﹣5x≥﹣15+6+1,
    ﹣2x≥﹣6,
    ∴x≤1
    所以它的正整数解为:1,2,1.
    此题考查一元一次不等式的整数解,解题关键在于掌握运算法则
    16、(1);(2)见解析.
    【解析】
    (1)由已知四边形是平行四边形得出,且,可求出AF,再通过证明即可求出的长;(2)通过作辅助线证明即可证明.
    【详解】
    解:(1)在平行四边形中,

    ∵,
    ∴,
    ,,
    ∴,
    ∴.
    点是的中点,

    .
    ∴,

    ∴,,
    ∴.
    (2)连接,
    ∵,,
    ∴,
    ∵点是的中点,,
    ∴,
    ∴,

    ∴,
    ∴,
    ∴.
    方法二:取中点,连接(其他证法均参照评分)
    本题考查了平行四边形的性质、三角形全等的判定与性质,利用三角形证明与是解题的关键.
    17、①;②
    【解析】
    (1)逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可.
    (2)逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可.
    【详解】
    (1)x2-7x-18=(x+2)(x-9);
    (2)x2+12xy-13y2=(x+13y)(x-y).
    本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab,进行因式分解,属于中考常考题型.
    18、(1);(2)﹣1.
    【解析】
    (1)先把二次根式化为最简二次根式,然后合并即可;
    (2)利用平方差公式进行计算即可.
    【详解】
    (1)原式
    =2

    (2)原式=2﹣5
    =﹣1.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3.
    【解析】
    运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.
    【详解】
    解:∵等腰直角三角形ABC,等腰直角三角形CDE
    ∴∠ECD=45°,∠ACB=45°
    即AC⊥EC,且CE∥BF
    当AG⊥BF,时AG最小,
    所以由∵AF=AE
    ∴AG=CG=AC=3
    故答案为3
    本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.
    20、≠.
    【解析】
    要使分式有意义,分式的分母不能为1.
    【详解】
    因为4x+5≠1,所以x≠-.
    故答案为≠−.
    解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.
    21、1
    【解析】
    根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.
    【详解】
    设这个多边形是n边形,
    根据题意得,(n-2)•180°=5×360°,
    解得n=1.
    故答案为:1.
    本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.
    22、50°或90°
    【解析】
    分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.
    详解:当AP⊥ON时,∠APO=90°,则∠A=50°,
    当PA⊥OA时,∠A=90°,
    即当△AOP为直角三角形时,∠A=50或90°.
    故答案为50°或90°.
    点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.
    23、y=-x
    【解析】
    直接把点(-2,2)代入正比例函数y=kx(k≠0),求出k的数值即可.
    【详解】
    把点(-2,2)代入y=kx得
    2=-2k,
    k=-1,
    所以正比例函数解析式为y=-x.
    故答案为:y=-x.
    本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y1=32x;y2=28x+1200;(2)当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
    【解析】
    (1)根据题意和表格求得用这两种方式购买跳绳所需的资金y(元)与购买的跳绳数x(条)之间的函数关系式即可.(2)比较(1)中求出的两个函数的大小并求出x的范围即可.(3)令y=10000,可以求得两种方式分别可以购买的跳绳数,从而可以得到王先生用不超过10000元购买跳绳,他最多能购买多少条跳绳.
    【详解】
    (1)由题意可得:
    王先生在实体店购买跳绳所需的资金y1(元)与购买的跳绳数x(条)之间的函数关系式为:y1=40x×0.8=32x;
    王先生在网店购买跳绳所需的资金y2(元)与购买的跳绳数x(条)之间的函数关系式为:y2=40×100+(x-100)×40×0.7=28x+1200;
    (2)当y1>y2时,32x>28x+1200,
    解得x>300;
    当y1=y2时,32x=28x+1200,
    解得x=300;
    当y1<y2时,32x>28x+1200,
    解得x<300;
    ∴当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
    本题考查一次函数的应用,明确题意,找出所求问题需要的条件,列出相应的函数关系式,会根据函数的值,求出相应的x的值是解题关键.
    25、(1)证明见解析;(2).
    【解析】
    (1)根据平行四边形的对边平行可以得到AB//CD,又AE//BD,可以证明四边形ABDE是平行四边形,所以AB=DE,故D是EC的中点;
    (2)先求出是等边三角形,再求EF.
    【详解】
    (1)在平行四边形中,
    ,且,
    又∵,
    ∴四边形是平行四边形,
    ∴,

    即是的中点;
    (2)∵,
    ∴是直角三角形
    又∵是的中点,
    ∴,
    ∵,
    ∴,
    ∴是等边三角形,
    ∴,
    ∴在中
    .
    本题主要考查了平行四边形的性质与判定,直角三角形斜边上的中线等于斜边的一半以及等边三角形的判定,熟练掌握性质定理并灵活运用是解题的关键.
    26、.
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.
    【详解】
    解:将微信记为A、支付宝记为B、银行卡记为C,
    画树状图如下:
    ∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,
    ∴两人恰好选择同一种支付方式的概率为.
    此题考查列表法与画树状图法,解题关键在于画出树状图.
    题号





    总分
    得分
    型号
    220
    225
    230
    235
    240
    245
    250
    数量(双)
    3
    5
    10
    15
    8
    3
    2
    购买方式
    标价(元条)
    优惠条件
    实体店
    40
    全部按标价的8折出售
    网店
    40
    购买100或100条以下,按标价出售;购买100条以上,从101条开始按标价的7折出售(免邮寄费)

    相关试卷

    宁夏省银川市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】:

    这是一份宁夏省银川市2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届银川市重点中学数学九上开学教学质量检测试题【含答案】:

    这是一份2025届银川市重点中学数学九上开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届宁夏银川市唐徕回民中学数学九上开学联考试题【含答案】:

    这是一份2025届宁夏银川市唐徕回民中学数学九上开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map