江苏省如皋市2024年九上数学开学教学质量检测模拟试题【含答案】
展开
这是一份江苏省如皋市2024年九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于二次函数y=﹣2x2+1,以下说法正确的是( )
A.开口方向向上B.顶点坐标是(﹣2,1)
C.当x<0时,y随x的增大而增大D.当x=0时,y有最大值﹣
2、(4分)在下列性质中,平行四边形不一定具有的是( )
A.对边相等B.对边平行C.对角互补D.内角和为360°
3、(4分)已知,则的关系是( )
A.B.C.D.
4、(4分)如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40 名同学一周参加体育锻炼时间的中位数,众数分别是( )
A.10.5,16B.8.5,16C.8.5,8D.9,8
5、(4分)已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )
A.B.C.D.
6、(4分)如图,在△ABC中,∠C=90°,点E是斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC=( )
A.60°B.70°C.80°D.90°
7、(4分)下列因式分解正确的是( )
A.B.
C.D.
8、(4分)到△ABC的三条边距离相等的点是△ABC的( ).
A.三条中线的交点B.三条边的垂直平分线的交点
C.三条高的交点D.三条角平分线的交点
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.
10、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.
11、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.
12、(4分)如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=_____________.
13、(4分)如图矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,∠ACG=∠AGC,∠GAF=∠F=20°,则AB=__.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一架长的梯子斜靠在一竖直的墙上,,这时.如果梯子的顶端沿墙下滑,那么梯子底端也外移吗?
15、(8分)计算:(2﹣)×÷5.
16、(8分)某中学举办“校园好声音”朗诵大赛,根据初赛成绩,七年级和八年级各选出5名选手组成七年级代表队和八年级代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示:
(1)根据所给信息填写表格;
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)若七年级代表队决赛成绩的方差为70,计算八年级代表队决赛成绩的方差,并判断哪个代表队的选手成绩较为稳定.
17、(10分)在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:
请你根据以上统计图中的信息,解答下列问题:
(1)该班有学生多少人?
(2)补全条形统计图;
(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?
18、(10分)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,AB=3cm,BC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_______cm.
20、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为________.
21、(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.
22、(4分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为______.
23、(4分)如图,在正方形中,点是对角线上一点,连接,将绕点逆时针方向旋转到,连接,交于点,若,,则线段的长为___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前的,假设从去年开始,连续三年(去年,今年,明年)该电子产品的价格下降率都相同.
(1)求这种电子产品的价格在这三年中的平均下降率.
(2)若两年前这种电子产品的价格是元,请预测明年该电子产品的价格.
25、(10分)如图,直线y=x+1与x,y轴交于点A,B,直线y=-2x+4与x,y轴交于点D,C,这两条直线交于点E.
(1)求E点坐标;
(2)若P为直线CD上一点,当△ADP的面积为9时,求P的坐标.
26、(12分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=1,O为AC的中点,OE⊥OD交AB于点E.若AE=,则DO的长为_____________.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.
【详解】
解:∵二次函数y=﹣2x2+1,
∴该函数图象开口向下,故选项A错误;
顶点坐标为(0,1),故选项B错误;
当x<0时,y随x的增大而增大,故选项C正确;
当x=0时,y有最大值1,故选项D错误;
故选:C.
本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
2、C
【解析】
A、平行四边形的对边相等,故本选项正确;
B、平行四边形的对边平行,故本选项正确;
C、平行四边形的对角相等不一定互补,故本选项错误;
D、平行四边形的内角和为360°,故本选项正确;故选C
3、D
【解析】
根据a和b的值去计算各式是否正确即可.
【详解】
A. ,错误;
B. ,错误;
C. ,错误;
D. ,正确;
故答案为:D.
本题考查了实数的运算问题,掌握实数运算法则是解题的关键.
4、D
【解析】
将这组数据按从小到大的顺序排列后,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,为1.故选D.
5、B
【解析】
关于x轴对称的点的坐标,一元一次不等式组的应用.
【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可:
∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限.
∴.
解不等式①得,a>-1,解不等式②得,a<,
所以,不等式组的解集是-1<a<.故选B.
6、B
【解析】
点E是斜边AB的中点,ED⊥AB,∠B=∠DAB, ∠DAB=2x,
故2x+2x+5x=90°,故 x=10°,∠BAC=70°.
故选B.
7、C
【解析】
利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.
【详解】
解:A、,故此选项不符合题意;
B、,故此选项不符合题意;
C、,故此选项符合题意;
D、,故此选项不符合题意;
故选:C.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
8、D
【解析】
根据角平分线的性质求解即可.
【详解】
到△ABC的三条边距离相等的点是△ABC的三条角平分线的交点
故答案为:D.
本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.
故答案为x>1.
10、1.
【解析】
∵将△ABC绕点B顺时针旋转60°,得到△BDE,
∴△ABC≌△BDE,∠CBD=60°,
∴BD=BC=12cm,
∴△BCD为等边三角形,
∴CD=BC=BD=12cm,
在Rt△ACB中,AB===13,
△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),
故答案为1.
考点:旋转的性质.
11、
【解析】
证明△ADD′是等腰直角三角形即可解决问题.
【详解】
解:由旋转可知:△ABD≌△ACD′,
∴∠BAD=∠CAD′,AD=AD′=2,
∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,
∴DD′=,
故答案为:.
本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
12、
【解析】
连接BD,BF,由正方形性质求出∠DBF=90〫,根据勾股定理求出BD,BF,再求DF,再根据直角三角形斜边上的中线等于斜边一半求BH.
【详解】
连接BD,BF,
∵四边形ABCD和四边形BEFG是正方形,
∴∠DBC=∠GBF =45〫, BD=,BF=,
∴∠DBF=90〫,
∴DF= ,
∵H为线段DF的中点,
∴BH=
故答案为
本题考核知识点:正方形性质,直角三角形. 解题关键点:熟记正方形,直角三角形的性质.
13、
【解析】
试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF-∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.
试题解析:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,
∵∠ACG=∠AGC,
∴∠CAG=180°-∠ACG-∠AGC=180°-2×40°=100°,
∴∠CAF=∠CAG+∠GAF=100°+20°=120°,
∴∠BAC=∠CAF-∠BAF=30°,
在Rt△ABC中,AC=2BC=2AD=2,
由勾股定理,AB=.
【考点】1.矩形的性质;2.等腰三角形的判定与性质;3.含30度角的直角三角形;4.直角三角形斜边上的中线;5.勾股定理.
三、解答题(本大题共5个小题,共48分)
14、梯子的顶端沿墙下滑时,梯子底端并不是也外移,而是外移.
【解析】
先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.
【详解】
解:∵在中,,,
∴.
∴
在中,,
∴.
∴
∴
∴梯子的顶端沿墙下滑时,梯子底端并不是也外移,
而是外移.
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
15、-
【解析】
先化简二次根式,然后利用乘法的分配率进行计算,最后化成最简二次根式即可.
【详解】
原式=(4-)×÷5=(3-)÷5=-
本题考查二次根式的混合运算,解答本题的关键是明确二次根式运算的法则和运算律.
16、(1)填表见解析;(2)七年级代表队成绩好些;(3)七年级代表队选手成绩较为稳定.
【解析】
(1)根据平均数、众数和中位数的定义分别进行解答即可;
(2)根据表格中的数据,可以结合两个年级成绩的平均数和中位数,说明哪个队的决赛成绩较好;
(3)根据方差公式先求出八年级的方差,再根据方差的意义即可得出答案.
【详解】
(1)八年级的平均成绩是:(75+80+85+85+100)÷5=85(分);
85出现了2次,出现的次数最多,则众数是85 分;
把八年级的成绩从小到大排列,则中位数是80分;
填表如下:
(2)七年级代表队成绩好些.
∵两个队的平均数都相同,七年级代表队中位数高,
∴七年级代表队成绩好些.
(3)S八年级2=[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160 ;
∵S七年级2<S八年级2,
∴七年级代表队选手成绩较为稳定.
本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了中位数和众数.
17、(1)因为捐2本的人数是15人,占30%,所以该班人数为=50
(2)根据题意知,捐4本的人数为:50-(10+15+7+5)=1.(如图)
(3)七(1)班全体同学所捐献图书的中位数是=3(本),众数是2本.
【解析】
(1)根据捐2本的人数是15人,占30%,即可求得总人数;
(2)首先根据总人数和条形统计图中各部分的人数计算捐4本的人数,进而补全条形统计图;
(3)根据中位数和众数的定义解答
18、y=2x﹣1.
【解析】
设一次函数的解析式是:y=kx+b,把(3,-5)与(-4,9)代入即得到一个关于k,b的方程组,解方程组即可求解.
【详解】
解:设一次函数为
因为它的图象经过,
所以 解得:
所以这个一次函数为
本题考查了待定系数法求函数的解析式,正确解方程组是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8
【解析】
由折叠的性质知,AE=CE,
∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm.
20、1
【解析】
由DE是AB边的垂直平分线,可得AE=BE,又由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,继而由△ACE的周长=AC+BC,求得答案.
【详解】
解:∵DE是AB边的垂直平分线,
∴AE=BE,
∵在直角△ABC中,∠BAC=90°,AB=8,AC=6,
∴BC==10,
∴△ACE的周长为:AC+AE+CE=AC+BE+CE=AC+BC=6+10=1.
故答案为:1.
本题考查,线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与转化思想的应用.
21、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.
【详解】
∵DE为△ABC的中位线,
∴DE=BC=×8=4,
∵∠AFB=90°,D是AB 的中点,
∴DF=AB= ×6=3,
∴EF=DE-DF=1,
故答案为:1.
本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.
22、1
【解析】
先求出100名学生中持“赞成”意见的学生人数所占的比例,再用总人数相乘即可.
【详解】
解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,
∴持“赞成”意见的学生人数=100-30=70名,
∴全校持“赞成”意见的学生人数约=2400×=1(名).
故答案为:1.
本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.
23、
【解析】
连接EF,过点E作EM⊥AD,垂足为M,设ME=HE=FH=x,则GH=3-x,从而可得到,于是可求得x的值,最后在Rt△AME中,依据勾股定理可求得AE的长.
【详解】
解:如图所示:连接EF,过点E作EM⊥AD,垂足为M.
∵ABCD为正方形,EM⊥AD,∠EDF=90°,AD=BC=CD=DG+CG=5,
∴△MED和△DEF均为等腰直角三角形.
∵DE=DF,∠EDH=∠FDH=45°,
∴DH⊥EF,EH=HF,
∴FH∥BC.
设ME=HE=FH=x,则GH=3﹣x.
由FH∥BC可知:,
即,解得:,
∴.
在Rt△AME中,.
故答案为:.
本题主要考查的是正方形的性质、等腰直角三角形的性质和判定、平行线分线段成比例定理、勾股定理的应用,求得ME的长是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)元
【解析】
(1)设这种电子产品价格的平均下降率为,根据今年年底的价格是两年前的列方程求解即可;
(2)根据明年的价格=今年的价格×(1-平均下降率)即可.
【详解】
(1)设这种电子产品价格的平均下降率为,
由题意得
解得,(不合题意,舍去)
即这种电子产品价格的平均下降率为.
(2)(元)
预测明年该电子产品的价格为元
此题考查了由实际问题抽象出一元二次方程,注意第二次降价后的价格是在第一次降价后的价格的基础上进行降价的.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
25、(1)点E的坐标为(1,2);(2)点 P的坐标为(-1,6)或(5,-6).
【解析】
(1)把y=x+1与y=-2x+4联立组成方程组,解方程组求得x、y的值,即可求得点E的坐标;(2)先求得点A的坐标为(-1,0)、点D的坐标为(2,0),可得AD=3,根据△ADP的面积为9求得△ADP边AD上的高为6,可得点P的纵坐标为6,再分当点P在y轴的上方时和当点P在y轴的下方时两种情况求点P的坐标即可.
【详解】
(1)由题意得,,
解得,,
∴点E的坐标为(1,2);
(2)∵直线y=x+1与x交于点A,直线y=-2x+4与x交于点D,
∴A(-1,0),D(2,0),
∴AD=3,
∵△ADP的面积为9,
∴△ADP边AD上的高为6,
∴点P的纵坐标为6,
当点P在y轴的上方时,-2x+4=6,
解得x=-1,
∴P(-1,6);
当点P在y轴的下方时,-2x+4=-6,
解得x=5,
∴P(5,-6);
综上,当△ADP的面积为9时,点 P的坐标为(-1,6)或(5,-6).
本题考查了两直线的交点问题,熟知两条直线的交点坐标是这两条直线相对应的一次函数表达式所组成的二元一次方程组的解是解决问题的关键.
26、
【解析】
求出△DAO≌△EBO,推出OD=OE,AD=BE,求出AD=BE=,由勾股定理得出DE2=DO2+OE2=AD2+AE2,求出即可.
【详解】
连结DE,如图,
∵∠ABC=90°,O为AC的中点,
∴∠CAB=∠ACB=45°,∠ABO=45°,AO=BO=CO,∠AOB=90°,
∵OE⊥OD,
∴∠DOE=∠AOB=90°,
∴∠DOA=∠BOE=90°-∠AOE,
∵AD∥BC,
∴∠DAB=180°-∠ABC=90°,
∴∠DAO=90°-45°=45°,
∴∠DAO=∠OBE,
在△DAO和△EBO中
∴△DAO≌△EBO(ASA),
∴OD=OE,AD=BE,
∵AB=1,AE=,
∴AD=BE=1-=,
在Rt△DAE和Rt△DOE中,由勾股定理得:DE2=DO2+OE2=AD2+AE2,
∴2DO2=()2+()2,
DO=,
故答案为:.
本题考查了等腰直角三角形性质,勾股定理,全等三角形的性质和判定的应用,解此题的关键是求出OD=OE,AD=BE,题目比较好,难度适中.
题号
一
二
三
四
五
总分
得分
批阅人
平均数(分)
中位数(分)
众数(分)
七年级
85
八年级
85
100
平均数(分)
中位数(分)
众数(分)
初二
85
85
85
初三
85
80
100
相关试卷
这是一份江苏省南通市如皋市丁堰镇初级中学2025届九上数学开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南京联合体2024年九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省昆山市、太仓市2025届九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。