江苏省南京玄武区2025届数学九上开学联考模拟试题【含答案】
展开
这是一份江苏省南京玄武区2025届数学九上开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于一次函数,如果随的增大而减小,那么反比例函数满足( )
A.当时,B.在每个象限内,随的增大而减小
C.图像分布在第一、三象限D.图像分布在第二、四象限
2、(4分)我校是教育部的全国青少年校园足球“满天星”训练基地,旨在“踢出快乐,拼出精彩”,如图,校园足球图片正中的黑色正五边形的内角和是( )
A.B.C.D.
3、(4分)已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
A.1B.3C.4D.5
4、(4分)如果代数式能分解成形式,那么k的值为( )
A.9B.﹣18C.±9D.±18
5、(4分)平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为( )
A.6cmB.3cmC.9cmD.12cm
6、(4分)如图,在R△ABC中,CD、CE分别是斜边AB上的中线和高,CD=8,CE=5,则Rt△ABC的面积是( )
A.80B.60C.40D.20
7、(4分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( )
A.方差B.平均数C.中位数D.众数
8、(4分)矩形、菱形和正方形的对角线都具有的性质是( )
A.互相平分B.互相垂直C.相等D.任何一条对角线平分一组对角
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一等腰三角形有两边长为,4,则这个三角形的周长为_______.
10、(4分)化简b 0 _______.
11、(4分)一次函数的图象经过第二、三、四象限,则的取值范围是__________.
12、(4分)如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
13、(4分)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数图象经过和两点
(1)求此一次函数的解析式;
(2)若点在函数图象上,求的值.
15、(8分)已知:
(1)在直角坐标系中画出△ABC;
(2)求△ABC的面积;
(3)设点P在x轴上,且△ABP与△ABC的面积相等,请直接写出点P的坐标.
16、(8分)如图,,是上的一点,且,.
求证:≌
17、(10分)如图,在平面直角坐标系中,矩形的顶点坐标为,点在边上从点运动到点,以为边作正方形,连,在点运动过程中,请探究以下问题:
(1)的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;
(2)若为等腰三角形,求此时正方形的边长.
18、(10分)为了解某校九年级学生立定跳远水平,随机抽取该年级名学生进行测试,并把测试成绩(单位:) 绘制成不完整的频数分布表和频数分布直方图.
请根据图表中所提供的信息,完成下列问题
(1)表中= ,= ;
(2)请把频数分布直方图补充完整;
(3)跳远成绩大于等于为优秀,若该校九年级共有名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若反比例函数y=的图象在二、四象限,则常数a的值可以是_____.(写出一个即可)
20、(4分)函数的自变量的取值范围是______.
21、(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为1,5,1,1.则最大的正方形E的面积是___.
22、(4分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)
23、(4分)已知函数,当时,函数值的取值范围是_____________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形ABCD中,对角线AC,BD相较于点O,的角平分线BF交CD于点E,交AC于点F
求证:;
若,求AB的值
25、(10分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
26、(12分)在矩形中,点在上,,,垂足为.
(1)求证:;
(2)若,且,求.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
一次函数,y随着x的增大而减小,则m<0,可得出反比例函数在第二、四象限,在每个象限内y随x的增大而增大.
【详解】
解:∵一次函数,y随着x的增大而减小,
∴m<0,
∴反比例函数的图象在二、四象限;且在每一象限y随x的增大而增大.
∴A、由于m<0,图象在二、四象限,所以x、y异号,错误;
B、错误;
C、错误;
D、正确.
故选:D.
本题考查了一次函数和反比例函数的图象和性质,注意和的图象与式子中的符号之间的关系.
2、C
【解析】
根据多边形内角和公式(n-2)×180°即可求出结果.
【详解】
解:黑色正五边形的内角和为:(5-2)×180°=540°,
故选:C.
本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.
3、D
【解析】
根据二次函数的图象与性质即可求出答案.
【详解】
解:①由抛物线的对称轴可知:,
∴,
由抛物线与轴的交点可知:,
∴,
∴,故①正确;
②抛物线与轴只有一个交点,
∴,
∴,故②正确;
③令,
∴,
∵,
∴,
∴,
∴,
∵,
∴,故③正确;
④由图象可知:令,
即的解为,
∴的根为,故④正确;
⑤∵,
∴,故⑤正确;
故选D.
考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
4、B
【解析】
利用完全平方公式的结构特征判断即可确定出k的值.
【详解】
解:∵=(x-9)2,
∴k=-18,
故选:B.
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
5、B
【解析】
设平行四边形较短的边长为x,根据平行四边形的性质和已知条件列出方程求解即可
【详解】
解:设平行四边形较短的边长为x,
∵相邻两边长的比为3:1,
∴相邻两边长分别为3x、x,
∴2x+6x=24,
即x=3cm,
故选B.
本题主要考查平行四边形的性质,根据性质,设出未知数,列出方程是解题的关键.
6、C
【解析】
根据直角三角形斜边上中线的性质求出,根据三角形的面积公式求出即可.
【详解】
解:在中,是斜边上的中线,,
,
,
的面积,
故选:.
本题考查了直角三角形斜边上中线的性质和三角形的面积,能根据直角三角形斜边上中线的性质求出的长是解此题的关键.
7、D
【解析】
解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.
故选.
8、A
【解析】
因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.
【详解】
解:根据平行四边形、矩形、菱形、正方形的对角线相互平分的性质,可知选A.
故选:A.
此题综合考查了平行四边形、矩形、菱形、正方形的对角线的性质,熟练掌握平行四边形、矩形、菱形、正方形的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、14或16.
【解析】
求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
(1)若4为腰长,6为底边长,
由于6−4
相关试卷
这是一份江苏省南京玄武区2024年九年级数学第一学期开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省南京市建邺区数学九上开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省南京建邺区六校联考数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。