![2024年江苏省南京玄武区十三中学集团科利华九上数学开学经典试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16210259/0-1727781267243/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年江苏省南京玄武区十三中学集团科利华九上数学开学经典试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16210259/0-1727781267279/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年江苏省南京玄武区十三中学集团科利华九上数学开学经典试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16210259/0-1727781267308/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年江苏省南京玄武区十三中学集团科利华九上数学开学经典试题【含答案】
展开
这是一份2024年江苏省南京玄武区十三中学集团科利华九上数学开学经典试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=kx+b的图象经过第一、三、四象限,则( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
2、(4分)已知|a+1|+=0,则b﹣1=( )
A.﹣1B.﹣2C.0D.1
3、(4分)如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )
A.2B.
C.D.
4、(4分)一个多边形的每一个内角都是 ,这个多边形是( )
A.四边形B.五边形C.六边形D.八边形
5、(4分)如图,两个大小不同的正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,两个正方形重叠部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A.B.C.D.
6、(4分)下列二次根式中,最简二次根式为
A.B.C.D.
7、(4分)若a≤1,则化简后为( )
A.B.C.D.
8、(4分)下面各式计算正确的是( )
A.(a5)2=a7B.a8÷a2=a6
C.3a3•2a3=6a9D.(a+b)2=a2+b2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数和函数,当时,x的取值范围是______________.
10、(4分)2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为_____.
11、(4分)计算:的结果是_____.
12、(4分)如图,△ABC与△A'B'C'是位似图形,点O是位似中心,若OA=2AA',S△ABC=8,则S△A'B'C'=___.
13、(4分)正方形、、、…按如图所示的方式放置.点、、、…和点、、、…分别在直线和轴上,则点的坐标是__________.(为正整数)
三、解答题(本大题共5个小题,共48分)
14、(12分)若关于x的分式方程=﹣2的解是非负数,求a的取值范围.
15、(8分)(1)在图中以正方形的格点为顶点,画一个三角形,使三角形的边长分别为、2、;
(2)求此三角形的面积及最长边上的高.
16、(8分)如图,港口位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一个固定方向航行,甲船沿西南方向以每小时12海里的速度航行,乙船沿东南方向以每小时16海里的速度航行,它们离开港口5小时后分别位于、两处,求此时之间的距离.
17、(10分)已知一次函数y=kx-4,当x=2时,y=-3.
(1)求一次函数的表达式;
(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x轴交点的坐标.
18、(10分)如图,在平面直角坐标系xOy中,点A( ,0),点B(0,1),直线EF与x轴垂直,A为垂足。
(1)若线段AB绕点A按顺时针方向旋转到AB′的位置,并使得AB与AB′关于直线EF对称,请你画出线段AB所扫过的区域(用阴影表示);
(2)计算(1)中线段AB所扫过区域的面积。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)过多边形某个顶点的所有对角线,将这个多边形分成个三角形,这个多边形是________.
20、(4分)如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为________.
21、(4分)1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.
22、(4分)在平面直角坐标系xOy中,已知抛物线的顶点在轴上,P,Q()是此抛物线上的两点.若存在实数,使得,且成立,则的取值范围是__________.
23、(4分)函数的自变量x的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并在数轴上表示出它的解集.
25、(10分)如图,在平面直角坐标系xOy中,A(0,5),直线x=-5与x轴交于点D,直线y=-x-与x轴及直线x=-5分别交于点C,E.点B,E关于x轴对称,连接AB.
(1)求点C,E的坐标及直线AB的解析式;
(2)若S=S△CDE+S四边形ABDO,求S的值;
(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积,如此不更快捷吗?”但大家经反复验算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.
26、(12分)如图,在中,,是的中点,是的中点,过点作交的延长线于点,连接.
(1)写出四边形的形状,并证明:
(2)若四边形的面积为12,,求.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
【详解】
由一次函数y=kx+b的图象经过第一、三、四象限
又由k>1时,直线必经过一、三象限,故知k>1
再由图象过三、四象限,即直线与y轴负半轴相交,所以b<1.
故选:B.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
2、B
【解析】
根据非负数的性质求出a、b的值,然后计算即可.
【详解】
解:∵|a+1|+=0,
∴a+1=0,a-b=0,
解得:a=b=-1,
∴b-1=-1-1=-1.
故选:B.
本题考查了非负数的性质——绝对值、算术平方根,根据两个非负数的和为0则这两个数都为0求出a、b的值是解决此题的关键.
3、D
【解析】
将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.
【详解】
将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:
则阴影面积=
=
=
故选:D
本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.
4、B
【解析】
根据多边形的内角和公式列式计算即可得解.
【详解】
解:设这个多边形是n边形,
由题意得,(n﹣2)•180°=108°•n,
解得n=5,
所以,这个多边形是五边形.
故选B.
本题考查了多边形的内角问题,熟记多边形的内角和公式是解题的关键.
5、C
【解析】
小正方形运动过程中,y与x的函数关系为分段函数,即当0≤x<完全重叠前,函数为为增函数;当完全重叠时,函数为平行于x轴的线段;当不再完全重叠时,函数为为减函数.即按照自变量x分为三段.
【详解】
解:依题意,阴影部分的面积函数关系式是分段函数,
面积由“增加→不变→减少”变化.
故选C.
本题考查了动点问题的函数图象.关键是理解图形运动过程中的几个分界点.本题也可以通过分析s随x的变化而变化的趋势及相应自变量的取值范围,而不求解析式来解决问题.
6、C
【解析】
化简得出结果,根据最简二次根式的概念即可做出判断.
【详解】
解:、,故不是最简二次根式;
、,故不是最简二次根式;
、是最简二次根式;
、,故不是最简二次根式。
故选:.
此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.
7、D
【解析】
将(1﹣a)3化为(1﹣a)2•(1﹣a),利用二次根式的性质进行计算即可.
【详解】
若a≤1,有1﹣a≥0;
则=(1﹣a).
故选D.
本题考查了二次根式的意义与化简.二次根式规律总结:当a≥0时,a;当a≤0时,a.
8、B
【解析】
根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;完全平方公式对各选项分析判断后利用排除法.
【详解】
A、(a5)2=a10,故本选项错误;
B、a8÷a2=a6,故本选项正确;
C、3a3•2a3=6a6 ,故本选项错误;
D、(a+b)2=a2+2ab+b2,故本选项错误.
故选B.
本题考查了幂的乘方的性质,同底数幂的除法的性质,完全平方公式,熟记各运算性质与完全平方公式结构是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
相关试卷
这是一份2024年江苏省南京市玄武区九上数学开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份03,2024年江苏省南京市玄武区科利华中学中考数学三模试卷,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南京市玄武区科利华中学中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。