江苏省南京玄武区2023-2024学年数学九上期末监测模拟试题含答案
展开
这是一份江苏省南京玄武区2023-2024学年数学九上期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=,已知关于的方程个等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.对于二次函数的图象,下列结论错误的是( )
A.顶点为原点B.开口向上C.除顶点外图象都在轴上方D.当时,有最大值
2.己知的半径为,点是线段的中点,当时,点与的位置关系是( )
A.点在外B.点在上C.点在内D.不能确定
3.如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是( )
A.3B.4C.5D.6
4.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为( )
A.70°B.65°C.55°D.45°
5.二次函数y=(x﹣1)2+2,它的图象顶点坐标是( )
A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(1,2)
6.如图,在平行四边形ABCD中,点M为AD边上一点,且,连接CM,对角线BD与CM相交于点N,若的面积等于3,则四边形ABNM的面积为
A.8B.9C.11D.12
7.sin65°与cs26°之间的关系为( )
A.sin65°<cs26°B.sin65°>cs26°
C.sin65°=cs26°D.sin65°+cs26°=1
8.若点是直线上一点,已知,则的最小值是( )
A.4B.C.D.2
9.如图,是的内切圆,切点分别是、,连接,若,则的度数是( )
A.B.C.D.
10.已知关于的方程(1)(2)(3)(4),其中一元二次方程的个数为( )个.
A.1B.2C.3D.4
二、填空题(每小题3分,共24分)
11.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB= 2 ,则此三角形移动的距离AA′=_______.
12.若代数式5x-5与2x-9的值互为相反数,则x=________.
13.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为_____.
14.如图,直角三角形中,,,,在线段上取一点,作交于点,现将沿折叠,使点落在线段上,对应点记为;的中点的对应点记为.若,则______.
15.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是_____.
16.如图,点C是以AB为直径的半圆上一个动点(不与点A、B重合),且AC+BC=8,若AB=m(m为整数),则整数m的值为______.
17.已知:如图,△ABC的面积为16,点D、E分别是边AB、AC的中点,则△ADE的面积为______.
18.在如图所示的电路图中,当随机闭合开关,,中的两个时,能够让灯泡发光的概率为________.
三、解答题(共66分)
19.(10分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
20.(6分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
21.(6分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时 ,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
22.(8分)江华瑶族自治县香草源景区2016年旅游收入500万元,由于政府的重视和开发,近两年旅游收入逐年递增,到今年2018年收入已达720万元.
(1)求这两年香草源旅游收入的年平均增长率.
(2)如果香草源旅游景区的收入一直保持这样的平均年增长率,从2018年算起,请直接写出n年后的收入表达式.
23.(8分)如图1,抛物线与轴交于,两点,与轴交于点,已知点,且对称轴为直线.
(1)求该抛物线的解析式;
(2)点是第四象限内抛物线上的一点,当的面积最大时,求点的坐标;
(3)如图2,点是抛物线上的一个动点,过点作轴,垂足为.当时,直接写出点的坐标.
24.(8分)如图,抛物线交轴于点和点,交轴于点.
(1)求这个抛物线的函数表达式;
(2)若点的坐标为,点为第二象限内抛物线上的一个动点,求四边形面积的最大值.
25.(10分)阅读对话,解答问题:
(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;
(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.
26.(10分)如图,为了测量山脚到塔顶的高度(即的长),某同学在山脚处用测角仪测得塔顶的仰角为,再沿坡度为的小山坡前进400米到达点,在处测得塔顶的仰角为.
(1)求坡面的铅垂高度(即的长);
(2)求的长.(结果保留根号,测角仪的高度忽略不计).
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、B
4、C
5、D
6、C
7、B
8、B
9、C
10、C
二、填空题(每小题3分,共24分)
11、
12、2
13、
14、3.2
15、
16、6或1
17、4
18、
三、解答题(共66分)
19、(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4).
20、(1)见解析;(2)4.1
21、(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元
22、(1)这两年香草源旅游收入的年平均增长率为20﹪;(2)
23、(1);(2)(3)或或或
24、 (1);(2)的最大值为.
25、(1)详见解析;(2).
26、(1)200;(2).
相关试卷
这是一份江苏省南京市鼓楼实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的根为等内容,欢迎下载使用。
这是一份江苏省南京市溧水区五校2023-2024学年九上数学期末监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,点P,下列事件是必然事件的是等内容,欢迎下载使用。
这是一份江苏省南京市建邺区金陵河西区2023-2024学年九上数学期末监测模拟试题含答案,共8页。