终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省南京东山外国语学校2024年数学九年级第一学期开学经典试题【含答案】

    立即下载
    加入资料篮
    江苏省南京东山外国语学校2024年数学九年级第一学期开学经典试题【含答案】第1页
    江苏省南京东山外国语学校2024年数学九年级第一学期开学经典试题【含答案】第2页
    江苏省南京东山外国语学校2024年数学九年级第一学期开学经典试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南京东山外国语学校2024年数学九年级第一学期开学经典试题【含答案】

    展开

    这是一份江苏省南京东山外国语学校2024年数学九年级第一学期开学经典试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,、是的中线,与相交于点,点、分别是、的中点,连接.若,,则四边形的周长是( )
    A.B.
    C.D.
    2、(4分)关于的一元二次方程有实数根,则的取值范围是( )
    A.B.
    C.且D.且
    3、(4分)某学习小组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16,则这组数据中位数是( )
    A.12 B.13 C.14 D.17
    4、(4分)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )
    A.△AFD≌△DCEB.AF=AD
    C.AB=AFD.BE=AD﹣DF
    5、(4分)直角三角形两条直角边的长分别为3和4,则斜边长为( )
    A.4B.5C.6D.10
    6、(4分)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=( )
    A.4B.5C.D.6
    7、(4分)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()
    A.18cm2B.36cm2C.72cm2D.108cm2
    8、(4分)图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( )
    A.51B.49C.76D.无法确定
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,CE=3,则DF_____.
    10、(4分)如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.
    11、(4分)一个装有进水管出水管的容器,从某时刻起只打开进水管进水,经过一段时间,在打开出水管放水,至15分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(升)与时间x(分钟)之间的关系如图所示,关停进水管后,经过_____________分钟,容器中的水恰好放完.
    12、(4分)将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.
    13、(4分)线段AB的两端点的坐标为A(﹣1,0),B(0,﹣2).现请你在坐标轴上找一点P,使得以P、A、B为顶点的三角形是直角三角形,则满足条件的P点的坐标是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,等腰直角三角形中,,点是斜边上的一点,将沿翻折得,连接,若是等腰三角形,则的长是______.
    15、(8分)解不等式组 ,并写出x的所有整数解.
    16、(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为 A(-3,0),与y轴交点为B,且与正比例函数的图象的交于点 C(m,4).
    (1)求m的值及一次函数 y=kx+b的表达式;
    (2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.
    17、(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.
    (1)请依据图表中的数据,求a,b的值.
    (2)直接写出表中的m= ,n= .
    (3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
    18、(10分)如图,点E,F为▱ABCD的对角线BD上的两点,连接AE,CF,∠AEB=∠CFD.求证:AE=CF.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)对于两个不相等的实数a、b,定义一种新的运算如下:(a+b>0),如:3*2= =,那么7*(6*3)=__.
    20、(4分)将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.
    21、(4分)在平面直角坐标系中,点关于轴对称的点的坐标是__________.
    22、(4分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为 cm.
    23、(4分)关于x的方程3x+a=x﹣7的根是正数,则a的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解不等式组
    25、(10分)定义:如果一条直线与一条曲线有且只有一个交点,且曲线位于直线的同旁,称之为直线与曲线相切,这条直线叫做曲线的切线,直线与曲线的唯一交点叫做切点.
    (1)如图,在平面直角坐标系中,点为坐标原点,以点为圆心,5为半径作圆,交轴的负半轴于点,求过点的圆 的切线的解析式;
    (2)若抛物线()与直线()相切于点,求直线的解析式;
    (3)若函数的图象与直线相切,且当时,的最小值为,求的值.
    26、(12分)如图1,在平画直角坐标系中,直线交轴于点,交轴于点,将直线沿轴向右平移2个单位长度交轴于,交轴于,交直线于.
    (1)直接写出直线的解析式为______,______.
    (2)在直线上存在点,使是的中线,求点的坐标;
    (3)如图2,在轴正半轴上存在点,使,求点的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据三角形的中位线即可求解.
    【详解】
    依题意可知D,E,F,G分别是AC,AB,BO,CO的中点,
    ∴DE是△ABC的中位线,FG是△OBC的中位线,EF是△ABO的中位线,DG是△AOC的中位线,
    ∴DE=FG=BC=2cm,EF=DG=AO=cm,
    ∴四边形的周长是DE+EF+FG+DG=7cm,
    故选A.
    此题主要考查中位线的性质,解题的关键是熟知三角形中位线的判定与性质.
    2、D
    【解析】
    由方程是一元二次方程可得:,由方程有实数根列不等式得的范围,综合得到答案
    【详解】
    解:因为一元二次方程有实数根,所以:
    且,
    解得:且.
    故选D.
    本题考查的是一元二次方程的根的情况,考查的是对根的判别式的理解,掌握一元二次方程根的判别式是解题关键.
    3、C
    【解析】分析:根据中位数的意义求解即可.
    详解:从小到大排列:12,12,13,14,16,17,18,
    ∵14排在中间,
    ∴中位数是14.
    故选C.
    点睛: 本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
    4、B
    【解析】
    A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.
    又∵DE=AD,∴△AFD≌△DCE(AAS),故A正确;
    B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B错误;
    C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正确;
    D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故D正确;
    故选B.
    5、B
    【解析】
    利用勾股定理即可求出斜边长.
    【详解】
    由勾股定理得:斜边长为:=1.
    故选B.
    本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.
    6、B
    【解析】
    取CE的中点G,连接FG.依据旋转的性质CE=BC=4,CD=AC=6,则AE=2,由G是CE的中点可求得AG=4,然后利用三角形的中位线定理可得到FG=3,最后在Rt△AFG中依据勾股定理求解即可.
    【详解】
    过点作于点.由图形旋转的性质可知,,,所以.因为,且,所以.又因为点为中点,所以为的中位线,点为中点,则,,故.在中,.
    故选B.
    7、D
    【解析】
    根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.
    【详解】
    根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.
    即A、B、C、D、E、F的面积之和为3个G的面积.
    ∵M的面积是61=36 cm1,
    ∴A、B、C、D、E、F的面积之和为36×3=108 cm1.
    故选D.
    考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.
    8、C
    【解析】
    试题解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则
    x2=122+52=169,
    解得x=1.
    故“数学风车”的周长是:(1+6)×4=2.
    故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、=3
    【解析】
    分析:根据直角三角形的斜边上的中线等于斜边的一半,可得AB的长,然后根据三角形的中位线的性质,求出DF的长.
    详解:∵在△ABC中,∠ACB=90°,E为AB的中点,CE=3
    ∴AB=6
    ∵D、F为AC、BC的中点
    ∴DF=AB=3.
    故答案为3.
    点睛:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.
    10、
    【解析】
    根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,1)代入即可得出直线的函数解析式.
    【详解】
    解:设平移后直线的解析式为y=3x+b.
    把(0,1)代入直线解析式得1=b,
    解得 b=1.
    所以平移后直线的解析式为y=3x+1.
    故答案为:y=3x+1.
    本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
    11、13.5
    【解析】
    从图形中可得前6分钟只进水,此时可计算出进水管的速度,从第6分到第15分既进水又出水,且进水速度大于出水速度, 根据此时进水的速度=进水管的速度-出水管的速度即可计算出出水管的出水速度,即可解答
    【详解】
    从图形可以看出
    进水管的速度为:60÷6=10(升/分),
    出水管的速度为:10-(90-60)÷(15-6)= (升/分),
    关闭进水管后,放水经过的时间为:90÷=13.5(分).
    此题考查一次函数的应用,函数图象,解题关键在于看懂图象中的数据
    12、y=3x-1
    【解析】
    ∵y=3x+1的图象沿y轴向下平移2个单位长度,
    ∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.
    故答案为y=3x﹣1.
    13、 (0,0)、(0,)、(4,0)
    【解析】
    由平面直角坐标系的特点可知当P和O重合时三角形PAB是直角三角形,由射影定理逆定理可知当AO2=BO•P′O时,三角形PAB是直角三角形或BO2=AO•OP″时三角形PAB也是直角三角形.
    【详解】
    如图:
    ①由平面直角坐标系的特点:AO⊥BO,所以当P和O重合时三角形PAB是直角三角形,
    所以P的坐标为:(0,0);
    ②由射影定理逆定理可知当AO2=BO•P′O时三角形PAB是直角三角形,
    即:12=2•OP′,
    解得OP′=;
    故P点的坐标是(0,);
    同理当BO2=AO•OP″时三角形PAB也是直角三角形,
    即22=1OP″
    解得OP″=4,
    故P点的坐标是(4,0).
    故答案为(0,0)、(0,)、(4,0)
    主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.
    三、解答题(本大题共5个小题,共48分)
    14、或
    【解析】
    分两种情形:①如图1中,当ED=EA时,作DH⊥BC于H.②如图2中,当AD=AE时,分别求解.
    【详解】
    如图1中,当ED=EA时,作DH⊥BC于H.
    ∵CB=CA,∠ACB=90°,
    ∴∠B=∠CAB=45°,
    由翻折不变性可知:∠CED=∠B=45°,
    ∴A,C,D,E四点共圆,
    ∵ED=EA,
    ∴∠ACE=∠ECD=∠BCD=30°,设BH=DH=x,则CH=x,
    ∵BC=,
    ∴x+x=,
    ∴x=.
    ∴BD=x=-1.
    如图2中,当AD=AE时,同法可证:∠ACD=∠ACE,
    ∵∠BCD=∠DCE,
    ∴∠BCD=2∠ACD,
    ∴∠BCD=60°,设BH=DH=x,则CH=x,
    ∵BC=,
    ∴x+x=,
    ∴x=,
    ∴BD=x=3-.
    综上所述,满足条件的BD的值为-1或3-.
    故答案为:-1或3-.
    本题考查翻折变换,等腰直角三角形的性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
    15、;
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
    【详解】
    解:解不等式①,得:.解不等式②,得:.则不等式组的解集为.
    ∴不等式组的整数解为:.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    16、(1)m的值为3,一次函数的表达式为
    (2) 点P的坐标为(0, 6)、(0,-2)
    【解析】
    (1)首先利用待定系数法把C(m,4)代入正比例函数y=x中,计算出m的值,进而得到C点坐标,再利用待定系数法A、C两点坐标代入一次函数y=kx+b中,计算出k、b的值进而得到一次函数解析式.
    (2)利用△BPC的面积为6,即可得出点P的坐标.
    解:(1)∵点C(m,4)在正比例函数的图象上,
    ∴·m,即点C坐标为(3,4)
    ∵一次函数经过A(-3,0)、点C(3,4)
    ∴解得:
    ∴一次函数的表达式为
    (2)点P的坐标为(0, 6)、(0,-2)
    “点睛”此题主要考查了待定系数法求一次函数解析式知识,根据待定系数法把A、C两点坐标代入函数y=kx+b中,计算出k、b的值是解题关键.
    17、(1)a=5,b=1;(2)m=6,n=20%;(3)答案见解析.
    【解析】
    试题分析:(1)根据题意可以得到关于a、b的方程组,从而可以求得a、b的值;
    (2)根据表格可以得到m和n的值;
    (3)根据表格中的平均数和中位数进行说明即可解答本题.
    试题解析:解:(1)由题意和图表中的数据,可得:
    ,即,解得:;
    (2)七年级的中位数m=6,优秀率n=2÷10=20%;
    (3)八年级队成绩比七年级队好的理由:
    ①八年级队的平均分比七年级队高,说明八年级队总成绩比七年级队的总成绩好.
    ②中位数七年级队是6,八年级队是7.5,说明八年级队半数以上的学生比七年级队半数以上的成绩好.
    点睛:本题考查条形统计图、中位数、方差,解题的关键是明确题意,找出所求问题需要的条件.
    18、详见解析
    【解析】
    由平行四边形的性质得出AB=CD,∠BAE=∠CDF,由AAS证明证得△ABE≌△CDF,继而证得结论.
    【详解】
    解:证明:∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD.
    ∴∠BAE=∠DCF,
    在△ABE和△CDF中,

    ∴△ABE≌△CDF(AAS).
    ∴AE=CF.
    题考查了平行四边形的性质以及全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    试题分析:∵,,
    ∴,
    即7*(6*3)=,
    考点:算术平方根.
    20、y=-x+1.
    【解析】
    根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.
    【详解】
    解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,
    ∵经过点(2,1),
    ∴1=2a+1,解得:a=-1,
    ∴平移后的直线的解析式为y=-x+1,
    故答案为:y=-x+1.
    本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.
    21、
    【解析】
    根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数解答即可.
    【详解】
    点关于轴对称的点的坐标是.
    故答案为:.
    本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.
    22、4.
    【解析】
    试题解析:∵四边形ABCD是矩形,
    ∴OA=AC,OB=BD,BD=AC=8cm,
    ∴OA=OB=4cm,
    ∵∠AOD=120°,
    ∴∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴AB=OA=4cm.
    考点:矩形的性质.
    23、a<﹣7
    【解析】
    求出方程的解,根据方程的解是正数得出>0,求出即可.
    【详解】
    解:3x+a=x-7
    3x-x=-a-7
    2x=-a-7
    x=,
    ∵>0,
    ∴a<-7,
    故答案为:a<-7
    本题考查解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.
    二、解答题(本大题共3个小题,共30分)
    24、1≤x<6.1
    【解析】
    分别解两个不等式,最后求公共部分即可.
    【详解】
    解:,
    解不等式①得:x≥1,
    解不等式②得:x<6.1,
    所以不等式组的解集为:1≤x<6.1.
    本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    25、(1);(2);(3)1或
    【解析】
    (1)连接,由、可求,即.因为过点的切线,故有,再加公共角,可证,由对应边成比例可求的长,进而得点坐标,即可求直线解析式.
    (2)分别把点代入抛物线和直线解析式,求得抛物线解析式为,直线解析式可消去得.由于直线与抛物线相切(只有一个交点),故联立解析式得到关于的方程有两个相等的实数根,即△,即求得的值.
    (3)因为二次函数图象与直线相切,所以把二次函数和直线解析式联立,得到关于的方程有两个相等是实数根,即△,整理得式子,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线.分类讨论对称轴在左侧、中间、右侧三种情况,画出图形得:①当对称轴在左侧即时,由图象可知时随的增大而增大,所以时取得最小值,把、代入得到关于的方程,方程无解;②当对称轴在范围内时,时即取得最小值,得方程,解得:;③当对称轴在2的右侧即时,由图象可知时随的增大而减小,所以时取得最小值,把、代入即求得的值.
    【详解】
    解:(1)如图1,连接,记过点的切线交轴于点



    设直线解析式为:
    ,解得:
    过点的的切线的解析式为;
    (2)抛物线经过点
    ,解得:
    抛物线解析式:
    直线经过点
    ,可得:
    直线解析式为:
    直线与抛物线相切
    关于的方程有两个相等的实数根
    方程整理得:

    解得:
    直线解析式为;
    (3)函数的图象与直线相切
    关于的方程有两个相等的实数根
    方程整理得:

    整理得:,可看作关于的二次函数,
    对应抛物线开口向上,对称轴为直线
    当时,的最小值为
    ①如图2,当时,在时随的增大而增大
    时,取得最小值
    ,方程无解;
    ②如图3,当时,时,取得最小值
    ,解得:;
    ③如图4,当时,在时随的增大而减小
    时,取得最小值
    ,解得:,(舍去)
    综上所述,的值为1或.
    本题考查了圆的切线的性质,相似三角形的判定和性质,一元二次方程的解法及根与系数的关系,二次函数的图象与性质.第(3)题的解题关键是根据相切列得方程并得到含、的等式,转化为关于的二次函数,再根据画图讨论抛物线对称轴情况进行解题.
    26、(1),22;(2);(3)
    【解析】
    (1)根据平移规律“上加下减、左加右减”进行计算可得到平移后的解析式,再分别求出A,B,C的坐标,即可计算出22;
    (2)作轴于,轴于,易得,则,
    再将x=4代入得到y=11,所以;
    (3)在轴正半轴上取一点,使,由外角性质和等腰三角形的性质得出,再用勾股定理求得OP的长,即可得出答案.
    【详解】
    解:(1)直线沿x轴向右平移2个单位长度,则
    y=-2(x-2)-7
    =-2x-3
    将和联立,得
    解得
    易得
    故答案为:,22;
    (2)作轴于,轴于,

    ∴,,
    ∵为的中线,
    ∴,
    ∵,
    ∴,
    ∴,
    在中,
    当时,,
    ∴.
    (3)由(1)得,,
    ∴, ,
    在轴正半轴上取一点,使,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    在中,由勾股定理可得:,
    ∴.
    本题考查了一次函数和几何的综合,熟练掌握一次函数的图象和性质是解题关键.
    题号





    总分
    得分

    相关试卷

    2024年江苏省南京市玄武外国语学校九年级数学第一学期开学检测模拟试题【含答案】:

    这是一份2024年江苏省南京市玄武外国语学校九年级数学第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏南京市东山外国语学校数学九年级第一学期开学联考模拟试题【含答案】:

    这是一份2024-2025学年江苏南京市东山外国语学校数学九年级第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省南京东山外国语学校2023-2024学年九上数学期末教学质量检测试题含答案:

    这是一份江苏省南京东山外国语学校2023-2024学年九上数学期末教学质量检测试题含答案,共8页。试卷主要包含了下列事件中,必然事件是,抛物线y=2等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map