开学活动
搜索
    上传资料 赚现金

    江苏省南京外国语学校2025届九年级数学第一学期开学统考试题【含答案】

    江苏省南京外国语学校2025届九年级数学第一学期开学统考试题【含答案】第1页
    江苏省南京外国语学校2025届九年级数学第一学期开学统考试题【含答案】第2页
    江苏省南京外国语学校2025届九年级数学第一学期开学统考试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南京外国语学校2025届九年级数学第一学期开学统考试题【含答案】

    展开

    这是一份江苏省南京外国语学校2025届九年级数学第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在平面直角坐标系中,点在坐标轴上,是的中点,四边形是矩形,四边形是正方形,若点的坐标为,则点的坐标为( )
    A.B.C.D.
    2、(4分)如图,AC=AD,BC=BD,则有( )
    A.AB垂直平分CDB.CD垂直平分AB
    C.AB与CD互相垂直平分D.CD平分∠ACB
    3、(4分)明明家与学校的图书馆和食堂在同一条直线上,食堂在家和图书馆之间。一天明明先去食堂吃了早餐,接着去图书馆看了一会书,然后回家。如图反应了这个过程中明明离家的距离y与时间x之间的对应关系,下列结论:①明明从家到食堂的平均速度为0.075km/min;②食堂离图书馆0.2km;③明明看书用了30min;④明明从图书馆回家的平均速度是0.08km/min,其中正确的个数是( )
    A.1个B.2个C.3个D.4个
    4、(4分)如图,在四边形中, , 交于 , 平分 ,,下面结论:① ;②是等边三角形;③;④,其中正确的有
    A.1个B.2个C.3个D.4个
    5、(4分)如图,已知正方形面积为36平方厘米,圆与各边相接,则阴影部分的面积是( )平方厘米.()

    A.18B.7.74C.9D.28.26
    6、(4分)在中,点,分别是边,的中点,若,则( )
    A.3B.6C.9D.12
    7、(4分)如图,以某点为位似中心,将△OAB进行位似变换得到△DFE,若△OAB与△DFE的相似比为k,则位似中心的坐标与k的值分别为( )
    A.(2,2),2B.(0,0),2C.(2,2),D.(0,0),
    8、(4分)在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足( )
    A.点D是BC的中点
    B.点D在∠BAC的平分线上
    C.AD是△ABC的一条中线
    D.点D在线段BC的垂直平分线上
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分).若2m= 3n,那么m︰n= .
    10、(4分)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为________________.
    11、(4分)分解因式:x2﹣7x=_____.
    12、(4分)两个相似三角形的周长分别为8和6,若一个三角形的面积为36,则另一个三角形的面积为________.
    13、(4分)如图,点A、B都在反比例函数y=(x>0)的图像上,过点B作BC∥x轴交y轴于点C,连接AC并延长交x轴于点D,连接BD,DA=3DC,S△ABD=1.则k的值为_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某校要从小红、小明和小亮三名同学中挑选一名同学参加数学素养大赛,在最近的四次专题测试中,他们三人的成绩如下表所示:
    (1)请算出小红的平均分为多少?
    (2)该校根据四次专题考试成绩的重要程度不同而赋予每个专题成绩一个权重,权重比依次为x:1:2:1,最后得出三人的成绩(加权平均数),若从高分到低分排序为小亮、小明、小红,求正整数x的值.
    15、(8分)某校为美化校园,计划对面积为2000m2的区域进行绿化,安排甲、乙两个工程队完成,已知甲队每天完成绿化的面积是乙队每天完成绿化的面积的2倍,并且在独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.
    (1)甲、乙两个工程队每天能完成绿化的面积分别是多少?
    (2)若学校每天需付给甲队的绿化费用为0.5万元,乙队为0.3万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?
    16、(8分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为_____.
    17、(10分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:
    5640 6430 6520 6798 7325
    8430 8215 7453 7446 6754
    7638 6834 7326 6830 8648
    8753 9450 9865 7290 7850
    对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
    步数分组统计表
    请根据以上信息解答下列问题:
    (1)填空:m= ______ ,n= ______ ;
    (2)补全频数发布直方图;
    (3)这20名“健步走运动”团队成员一天行走步数的中位数落在______ 组;
    (4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.
    18、(10分) (1)用“<”“>”或“=”填空:
    51+31______1×5×3;
    31+11______1×3×1.
    (﹣3)1+11_____1×(﹣3)×1;
    (﹣4)1+(﹣4)1______1×(﹣4)×(﹣4).
    (1)观察以上各式,你发现它们有什么规律吗?你能用一个含有字母a,b的式子表示上述规律吗?再换几个数试一试.
    (3)运用你所学的知识说明你发现的规律的正确性.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.
    20、(4分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于___________(填普查或抽样调查)
    21、(4分)在▱ABCD中,∠BAD的平分线AE把边BC分成5和6两部分,则▱ABCD的周长为_____.
    22、(4分)如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE的长为_____________.
    23、(4分)如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知在△ABC中,AB=1,BC=4,CA=.
    (1)分别化简4,的值.
    (2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上(每个小方格的边长为1).
    (3)求出△ABC的面积.
    25、(10分)若a=,b=,请计算a2+b2+2ab的值.
    26、(12分)甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘千克,在甲、乙采摘园所需总费用为、元,、与之间的函数关系的图像如图所示.
    (1)分别求出、与之间的函数关系式;
    (2)求出图中点、的坐标;
    (3)若该游客打算采摘圣女果,根据函数图像,直接写出该游客选择哪个采摘园更合算.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    过点D作DH⊥y轴,交y轴于H,根据矩形和正方形的性质可得∠EOF=∠BCF=∠HDE=90°,EF=BF=ED,BC=OA,根据角的和差故关系可得∠FBC=∠OFE=∠HED,∠BFC=∠OEF=∠HDE,利用ASA可证明△OFE≌△CBF≌△HDE,可得FC=OE=HD,BC=OF=HE,由点E为OA中点可得OF=2FC,即可求出FC的长,进而可得HE的长,即可求出OH的长,即可得点D坐标.
    【详解】
    过点D作DH⊥y轴,交y轴于H,
    ∵四边形是矩形,四边形是正方形,
    ∴∠EOF=∠BCF=∠HDE=∠EFB=90°,EF=BF=ED,BC=OA,
    ∴∠OFE+∠BFC=90°,∠FBC+∠BFC=90°,
    ∴∠OFE=∠FBC,
    同理:∠OEF=∠BFC,
    在△OEF和△CFB中,,
    ∴BC=OF=OA,FC=OE,
    ∵点E为OA中点,
    ∴OA=2OE,
    ∴OF=2OE,
    ∴OC=3OE,
    ∵点C坐标为(3,0),
    ∴OC=3,
    ∴OE=1,OF=2,
    同理:△HDE≌△OEF,
    ∴HD=OE=1,HE=OF=2,
    ∴OH=OE+HE=3,
    ∴点D坐标为(1,3),
    故选:D.
    本题考查正方形的性质、矩形的性质及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.
    2、A
    【解析】
    由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.
    【详解】
    解:∵AC=AD,BC=BD,
    ∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,
    ∴AB是CD的垂直平分线.
    即AB垂直平分CD.
    故选:A.
    此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.
    3、D
    【解析】
    根据函数图象判断即可.
    【详解】
    解:明明从家到食堂的平均速度为:0.6÷8=0.075km/min,①正确;食堂离图书馆的距离为:0.8-0.6=0.2km,②正确;明明看书的时间:58-28=30min,③正确;明明从图书馆回家的平均速度是:0.8÷(68-58)=0.08km/min,④正确.故选D.
    本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.
    4、C
    【解析】
    由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=AB•CE,S△ABE=AB•BE,由BE=AE=CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=AE,则DC=2BE,④正确;即可得出结果.
    【详解】
    解:∵AD∥BC,AE∥CD,
    ∴四边形AECD是平行四边形,
    ∵AD=DC,
    ∴四边形AECD是菱形,
    ∴AE=EC=CD=AD,
    ∴∠EAC=∠ECA,
    ∵AE平分∠BAC,
    ∴∠EAB=∠EAC,
    ∴∠EAB=∠EAC=∠ECA,
    ∵∠ABC=90°,
    ∴∠EAB=∠EAC=∠ECA=30°,
    ∴BE=AE,AC=2AB,①正确;
    ∵AO=CO,
    ∴AB=AO,
    ∵∠EAB=∠EAC=30°,
    ∴∠BAO=60°,
    ∴△ABO是等边三角形,②正确;
    ∵四边形AECD是菱形,
    ∴S△ADC=S△AEC=AB•CE,
    S△ABE=AB•BE,
    ∵BE=AE=CE,
    ∴S△ADC=2S△ABE,③错误;
    ∵DC=AE,BE=AE,
    ∴DC=2BE,④正确;
    故选:C.
    本题考查平行四边形的判定、菱形的判定与性质、角平分线定义、等边三角形的判定、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握菱形的性质与含30°角直角三角形的性质是解题关键.
    5、B
    【解析】
    【分析】先求正方形的边长,可得圆的半径,再用正方形的面积减去圆的面积即可.
    【详解】因为6×6=36,所以正方形的边长是6厘米
    36-3.14×(6÷2)2
    =36-28.26
    =7.74(平方厘米)
    故选:B
    【点睛】本题考核知识点:正方形性质.解题关键点:理解正方形基本性质.
    6、B
    【解析】
    三角形的中位线等于第三边的一半,那么第三边应等于中位线长的2倍.
    【详解】
    ∵在中,点,分别是边,的中点且
    ∴AC=2DE
    =2×3
    =6
    故选B
    此题考查三角形中位线定理,解题关键在于掌握定理
    7、A
    【解析】
    两对对应点的连线的交点即为位似中心;找到任意一对对应边的边长,让其相比即可求得k.
    【详解】
    连接OD、BE,延长OD交BE的延长线于点O′,点O′也就是位似中心,坐标为(1,1),k=OA:FD=8:4=1.
    故选A.
    本题考查了位似变换、坐标与图形的性质等知识,记住两对对应点的连线的交点为位似中心;任意一对对应边的比即为位似比.
    8、B
    【解析】
    根据角平分线的判定定理解答即可.
    【详解】
    如图所示,DE为点D到AB的距离.
    ∵DC=DE,∠C=90°,DE⊥AB,∴AD平分∠CAD,则点D在∠BAC的平分线上.
    故选B.
    本题考查了角平分线的判定,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3︰2
    【解析】
    根据比例的性质将式子变形即可.
    【详解】


    故答案为: 3︰2
    点睛:此题考查比例的知识
    10、 .
    【解析】
    由题意得OA=OA1=2,
    ∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,
    ∴B1(2,0),B2(6,0),B3(14,0)…,
    2=22﹣2,6=23﹣2,14=24﹣2,…
    ∴Bn的横坐标为,
    故答案为:.
    11、x(x﹣7)
    【解析】
    直接提公因式x即可.
    【详解】
    解:原式=x(x﹣7),
    故答案为:x(x﹣7).
    本题主要考查了因式分解的运用,准确进行计算是解题的关键.
    12、64或
    【解析】
    根据相似三角形周长的比等于相似比,面积的比等于相似比的平方求出面积比,根据题意计算即可.
    【详解】
    解:∵两个相似三角形的周长分别为8和6,
    ∴两个相似三角形的周长之比为4:3,
    ∴两个相似三角形的相似比是4:3,
    ∴两个相似三角形的面积比是16:9,
    又一个三角形的面积为36,
    设另一个的面积为S,则16:9=S:36或16:9=36:S,
    ∴S=64或,
    故答案为:64或.
    本题考查的是相似三角形的性质,相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.
    13、2.
    【解析】
    过点A作AN⊥x轴交x轴于点N,交BC于点M,设B(x,y),则BC=x,MN=y,由平行线分线段成比例定理得AM=2y,根据 =1 ,即可求得xy=k的值.
    【详解】
    解:如图,过点A作AN⊥x轴交x轴于点N,交BC于点M,设B(x,y),则BC=x,MN=y,
    ∵BC∥x轴,DA=3DC,
    ∴AN=3MN,AM=2MN
    ∴MN=y,AM =2y
    ∵ ,S△ABD=1
    ∴ ,
    ∴xy=2,
    ∵反比例函数y=(x>0),
    ∴k=xy=2.
    故答案为:2.
    本题考查平行线分线段成比例定理,反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    三、解答题(本大题共5个小题,共48分)
    14、(1)77.5分;(2)1
    【解析】
    (1)根据平均数公式求小红的平均成绩即可;
    (2)利用加权平均数公式分别把三人的平均成绩表示出来,再根据三人的成绩的高低列不等式,求出x的范围,在此范围内取正整数即可
    【详解】
    (1)解:(70+75+80+85)÷4=77.5分,
    答:小红的平均分为77.5分.
    (2)解:由题意得:
    > >
    解得:2<x<4,
    ∵x为正整数的值.
    ∴x=1,
    答:正整数x的值为1.
    本题主要考查不等式的应用,第二问的解题关键在于能够理解题意列出不等式.
    15、(1)甲工程队每天能完成绿化的面积为3m1,乙工程队每天能完成绿化的面积为2m1.(1)至少应安排甲队工作10天.
    【解析】
    (1)设乙工程队每天能完成绿化的面积为xm1,则甲工程队每天能完成绿化的面积为1xm1,根据“在独立完成面积为600m1区域的绿化时,甲队比乙队少用6天”,即可得出关于x的分式方程,解之并检验后,即可得出结论;
    (1)设安排甲工程队工作y天,则乙工程队工作天,根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最小正整数即可.
    【详解】
    (1)设乙工程队每天能完成绿化的面积为xm1,则甲工程队每天能完成绿化的面积为1xm1,
    根据题意得:,
    解得:x=2.
    经检验,x=2是原方程的解,
    ∴1x=3.
    答:甲工程队每天能完成绿化的面积为3m1,乙工程队每天能完成绿化的面积为2m1.
    (1)设安排甲工程队工作y天,则乙工程队工作天,
    根据题意得:0.5y+0.3(40﹣1y)≤10,
    解得:y≥10.
    答:至少应安排甲队工作10天.
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出关于x的分式方程;(1)根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,列出关于y的一元一次不等式.
    16、5m.
    【解析】
    根据勾股定理即可得到结果.
    【详解】
    解:在Rt△ABC中BC=12,AC=13,AB2+BC2=AC2
    ∴AB2=AC2-BC2=132-122=25
    ∴AB=5
    答:地面钢缆固定点A到电线杆底部B的距离为5米.
    考点:本题考查勾股定理的应用
    点评:解答本题的关键是熟练掌握勾股定理:直角三角形的两直角边的平方和等于斜边的平方.
    17、(1)4;1;(2)见解析;(3)B;(4)48.
    【解析】
    (1)根据题目中的数据即可直接确定m和n的值;
    (2)根据(1)的结果即可直接补全直方图;
    (3)根据中位数的定义直接求解;
    (4)利用总人数乘以对应的比例即可求解.
    【详解】
    解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;
    9500≤x<10500的有9865这1个,即n=1.
    故答案为4;1;
    (2)如图:
    (3)由于一共20个数据,其中位数是第10、11个数据的平均数,
    而第10、11个数据的平均数均落在B组,
    ∴这20名“健步走运动”团队成员一天行走步数的中位数落在B组;
    故答案为B;
    (4)120×=48(人),
    答:估计其中一天行走步数不少于7500步的有48人.
    故答案为48.
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    18、 (1)>,>,>,=;(1)如果a、b是两个实数,则有a1+b1≥1ab;(3)证明见解析.
    【解析】
    (1)通过计算可比较上述算式的大小;
    (1)由于(a-b)1≥0,所以a1+b1≥1ab
    (3)证明结论时根据完全平方的计算结果是非负数证明即可.
    【详解】
    解:(1)51+31>1×5×3;
    31+11>1×3×1.
    (﹣3)1+11>1×(﹣3)×1;
    (﹣4)1+(﹣4)1=1×(﹣4)×(﹣4)
    (1)一般结论是:如果a、b是两个实数,则有a1+b1≥1ab;
    (3)∵(a﹣b)1≥0,
    ∴a1﹣1ab+b1≥0,
    ∴a1+b1≥1ab.
    本题主要考查实数的大小的比较数字的变化规律,通过阅读题目,发现规律实质上是完全平方公式的变形:因为(a-b)1≥0,所以a1+b1≥1ab
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、AB=AD.
    【解析】
    由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.
    【详解】
    添加AB=AD,
    ∵OA=OC,OB=OD,
    ∴四边形ABCD为平行四边形,
    ∵AB=AD,
    ∴四边形ABCD是菱形,
    故答案为:AB=AD.
    此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.
    20、抽样调查
    【解析】
    根据普查和抽样调查的定义,显然此题属于抽样调查.
    【详解】
    由于只是取了一点品尝,所以应该是抽样调查.
    故答案为:抽样调查.
    此题考查抽样调查和全面调查,解题关键在于掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.
    21、32或1
    【解析】
    根据平行四边形的性质可得∠DAE=∠AEB,再由角平分线的性质和等腰三角形的性质可得AB=BE,然后再分两种情况计算即可.
    【详解】
    解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB,
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∴∠BAE=∠BEA,
    ∴AB=BE,BC=BE+EC,
    ①当BE=5,EC=6时,平行四边形ABCD的周长为:2(AB+BC)=2×(5+5+6)=32;
    ②当BE=6,EC=5时,平行四边形ABCD的周长为:2(AB+BC)=2×(6+6+5)=1.
    故答案为32或1.
    平行四边形的性质及等腰三角形的性质、角平分线的性质是本题的考点,根据其性质求得AB=BE是解题的关键.
    22、1
    【解析】
    分析:根据角平分线的性质求出∠DAC=10°,根据直角三角形的性质得出CD的长度,最后根据角平分线的性质得出DE的长度.
    详解:∵∠BAC=60°,AD平分∠BAC, ∴∠DAC=10°, ∵AD=6, ∴CD=1,
    又∵DE⊥AB, ∴DE=DC=1.
    点睛:本题主要考查的是直角三角形的性质以及角平分线的性质,属于基础题型.合理利用角平分线的性质是解题的关键.
    23、
    【解析】
    根据菱形面积=对角线积的一半可求,再根据勾股定理求出,然后由菱形的面积即可得出结果.
    【详解】
    ∵四边形是菱形,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴;
    故答案为:.
    本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    (1)首先化简和,再分别计算乘法即可;
    (2)根据勾股定理画出AC=,再确定B的位置,既要使AB=1,又要使BC=即可;
    (3)利用三角形的面积公式,以BA为底,确定AB上的高为2,再计算即可.
    【详解】
    (1)4=4×=2,
    =×=×=;
    (2)如图所示:
    (3)△ABC的面积1×2=1平方单位.
    本题主要考查了应用与设计作图,以及勾股定理的应用和二次根式的计算,关键是正确化简AC、BC的长.
    25、1.
    【解析】
    将a、b的值代入原式=(a+b)2计算可得.
    【详解】
    当a=,b=时,
    原式=(a+b)2


    =1.
    本题主要考查考查二次根式的运算,解题的关键是掌握完全平方公式和二次根式的混合运算顺序和法则.
    26、(1)与之间的函数关系式为;与之间的函数关系式为;(2);(3)甲
    【解析】
    (1)根据单价=总价÷数量,即可求出甲、乙两采摘园优惠前的草莓销售价格;函数关系式=60+单价×数量;与之间的函数关系式结合图像,利用待定系数法即可解决;
    (2)分两段,求函数交点即可解决;
    (3)当时,根据y1和 y2函数图象分析,图象在下方的价格低.
    【详解】
    (1)由图得单价为(元),
    据题意,得
    当时,,
    当时由题意可设,将和分别代入中,
    得,解得,
    故与之间的函数关系式为
    (2)联立,,得,故.
    联立,,得
    解得,故.
    (3)当时, y1的函数图象在 y2函数图象下方,故甲采摘园更合算.
    本题考查了一次函数的应用,注意分段函数要分别讨论;熟练掌握待定系数法以及根据图象分析函数大小是解答本题的关键.
    题号





    总分
    得分
    批阅人
    学生
    专题
    集合证明
    PISA问题
    应用题
    动点问题
    小红
    70
    75
    80
    85
    小明
    80
    80
    72
    76
    小亮
    75
    75
    90
    65
    组别
    步数分组
    频数
    A
    5500≤x<6500
    2
    B
    6500≤x<7500
    10
    C
    7500≤x<8500
    m
    D
    8500≤x<9500
    3
    E
    9500≤x<10500
    n

    相关试卷

    江苏省南京市南京外国语学校2024年九年级数学第一学期开学检测试题【含答案】:

    这是一份江苏省南京市南京外国语学校2024年九年级数学第一学期开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省南京江北新区南京市浦口外国语学校2025届九年级数学第一学期开学考试模拟试题【含答案】:

    这是一份江苏省南京江北新区南京市浦口外国语学校2025届九年级数学第一学期开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省南京东山外国语学校2024年数学九年级第一学期开学经典试题【含答案】:

    这是一份江苏省南京东山外国语学校2024年数学九年级第一学期开学经典试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map