湖北省宜昌市高新区2024-2025学年数学九上开学学业质量监测试题【含答案】
展开这是一份湖北省宜昌市高新区2024-2025学年数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,四边形ABCD是菱形,DH⊥AB于点H,若AC=8cm,BD=6cm,则DH=( )
A.5cmB.cmC.cmD.cm
2、(4分)某班抽6名同学参加体能测试,成绩分别是1,90,75,75,1,1.则这组同学的测试成绩的中位数是( )
A.75B.1C.85D.90
3、(4分)设直角三角形的两条直角边长及斜边上的高分别为a,b及h,则下列关系正确的是( )
A.B.
C.D.
4、(4分)如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是( )
A.B.
C.或D.或
5、(4分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的是( )
A.①②③B.①②④C.①③④D.①②③④
6、(4分)函数 中,自变量 的取值范围是( )
A.B.C.D.
7、(4分)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是( )
A.y1>y2
B.y1<y2
C.当x1<x2时,y1>y2
D.当x1<x2时,y1<y2
8、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.,,B.,,C.,1,2D.,,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形 ABCD 中,E、F、G、H 分别为各边的中点,顺次连 结 E、F、G、H,把四边形 EFGH 称为中点四边形.连结 AC、BD,容易证明:中点 四边形 EFGH 一定是平行四边形.
(1)如果改变原四边形 ABCD 的形状,那么中点四边形的形状也随之改变,通过探索 可以发现:当四边形 AB CD 的对角线满足 AC=BD 时,四边形 EFGH 为菱形;当四边形ABCD 的对角线满足 时,四边形 EFGH 为矩形;当四边形 ABCD 的对角线满足 时,四边形 EFGH 为正方形.
(2)试证明:S△AEH+S△CFG= S□ ABCD
(3)利用(2)的结论计算:如果四边形 ABCD 的面积为 2012, 那么中点四边形 EFGH 的面积是 (直接将结果填在 横线上)
10、(4分)若一次函数的图象,随的增大而减小,则的取值范围是_____.
11、(4分)▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
12、(4分)一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),当n>0时,k的取值范围是_____.
13、(4分)27的立方根为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:
(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?
(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?
(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x= ,y= .(写出x与y的一组整数值即可).
15、(8分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420 km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2 h,求汽车原来的平均速度.
16、(8分)如图,已知各顶点的坐标分别为,,.
(1)画出以点为旋转中心,按逆时针方向旋转后得到的;
(2)将先向右平移4个单位长度,再向上平移5个单位长度,得到.
①在图中画出;
②如果将看成是由经过一次平移得到的,请指出这一平移的平移方向和平移距离.
17、(10分)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.
18、(10分)如图,在菱形ABCD中,∠BAD=120°,E为AB边上一点,过E作EG⊥BC于点G,交对角线BD于点F.
(1)如图(1),若∠ACE=15°,BC=6,求EF的长;
(2)如图(2),H为CE的中点,连接AF,FH,求证:AF=2FH.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)2﹣6+的结果是_____.
20、(4分)已知关于的方程有解,则的值为____________.
21、(4分)在函数y=中,自变量x的取值范围是_____.
22、(4分)在平面直角坐标系中,四边形是菱形。若点A的坐标是,点的坐标是__________.
23、(4分)如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形ABCD的边长为4,动点E从点A出发,以每秒2个单位的速度沿A→D→A运动,动点G从点A出发,以每秒1个单位的速度沿A→B运动,当有一个点到达终点时,另一点随之也停止运动.过点G作FG⊥AB交AC于点F.设运动时间为t(单位:秒).以FG为一直角边向右作等腰直角三角形FGH,△FGH与正方形ABCD重叠部分的面积为S.
(1)当t=1.5时,S=________;当t=3时,S=________.
(2)设DE=y1,AG=y2,在如图所示的网格坐标系中,画出y1与y2关于t的函数图象.并求当t为何值时,四边形DEGF是平行四边形?
25、(10分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为48°,测得底部处的俯角为58°,求乙建筑物的高度.(参考数据:,,,.结果取整数)
26、(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移1个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A1B1C1与△ABC关于原点O成中心对称,画出△A1B1C1.
(1)在(1)中所得的△A1B1C1和△A1B1C1关于点M成中心对称,请直接写出对称中心M点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据菱形性质在Rt△ABO中利用勾股定理求出AB=5,再根据菱形的面积可得AB×DH=×6×8=1,即可求DH长.
【详解】
由已知可得菱形的面积为×6×8=1.
∵四边形ABCD是菱形,
∴∠AOB=90°,AO=4cm,BO=3cm.
∴AB=5cm.
所以AB×DH=1,即5DH=1,解得DH=cm.
故选:C.
主要考查了菱形的性质,解决菱形的面积问题一般运用“对角线乘积的一半”和“底×高”这两个公式.
2、B
【解析】
中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).
【详解】
解:将这组数据从小到大的顺序排列为:75,75,1,1,1,90,
中位数是(1+1)÷2=1.
故选:B.
考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
3、A
【解析】
设斜边为c,根据勾股定理即可得出,再由三角形的面积公式即可得出结论.
【详解】
解:设斜边为c,根据勾股定理即可得出,
,
,即a2b2=a2h2+b2h2,
,
即,
故选:A.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
4、C
【解析】
先根据正方形的性质求出BD、BC的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.
【详解】
四边形OABC是正方形,
由题意,分以下两种情况:
(1)如图,把逆时针旋转,此时旋转后点B的对应点落在y轴上,旋转后点D的对应点落在第一象限
由旋转的性质得:
点的坐标为
(2)如图,把顺时针旋转,此时旋转后点B的对应点与原点O重合,旋转后点D的对应点落在x轴负半轴上
由旋转的性质得:
点的坐标为
综上,旋转后点D的对应点的坐标为或
故选:C.
本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.
5、A
【解析】
根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.
【详解】
由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;
由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;
当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;
乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.
所以正确的有①②③,
故选A.
本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.
6、D
【解析】
试题分析:根据分式有意义的条件是分母不为1;分析原函数式可得关系式x+1≠1,解可得答案.
解:根据题意可得x+1≠1;
解得x≠﹣1;
故选D.
【点评】本题主要考查函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为1.
7、C
【解析】
试题分析:根据正比例函数图象的性质可知.
解:根据k<0,得y随x的增大而减小.
①当x1<x1时,y1>y1,
②当x1>x1时,y1<y1.
故选C.
考点:正比例函数的性质.
8、A
【解析】
根据勾股定理的逆定理逐项分析即可.
【详解】
A. ∵1.52+22≠32,∴ ,,不能作为直角三角形的三边长,符合题意;
B.∵72+242=252,∴,,能作为直角三角形的三边长,不符合题意;
C.∵ ,∴,1,2能作为直角三角形的三边长,不符合题意;
D.∵92+122=152,∴,,能作为直角三角形的三边长,不符合题意;
故选A.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、;(2)详见解析;(3)1
【解析】
(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.
(2)由相似三角形的面积比等于相似比的平方求解.
(3)由(2)可得S▱EFGH=S四边形ABCD=1
【详解】
(1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;
若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF= AC,EH=BD,故应有AC=BD;
(2)S△AEH+S△CFG=S四边形ABCD
证明:在△ABD中,
∵EH=BD,
∴△AEH∽△ABD.
∴=()2=
即S△AEH=S△ABD
同理可证:S△CFG=S△CBD
∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;
(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,
同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,
故S▱EFGH=S四边形ABCD=1.
本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.
10、
【解析】
利用函数的增减性可以判定其比例系数的符号,从而确定m的取值范围.
【详解】
解:∵一次函数y=(m-1)x+2,y随x的增大而减小,
∴m-1<0,
∵m<1,
故答案为:m<1.
本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.
11、(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
∴C(3,1).
12、k<1
【解析】
分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.
详解:∵一次函数y=kx+2(k≠1)的图象与x轴交于点A(n,1),
∴n=﹣,
∴当n>1时,﹣>1,
解得,k<1,
故答案为k<1.
点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
13、1
【解析】
找到立方等于27的数即可.
解:∵11=27,
∴27的立方根是1,
故答案为1.
考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
三、解答题(本大题共5个小题,共48分)
14、(1)甲;(2)丙;(3)1,1
【解析】
(1)运用求平均数公式即可求出三人的平均成绩,比较得出结果;
(2)将三人的总成绩按比例求出测试成绩,比较得出结果.
(3)根据专业知识、语言能力和综合素质三项测试得分可知,乙的语言能力最好,可将语言能力的比例提高,乙将被录用.
【详解】
(1),
,
.
∵73>70>61,
∴甲将被录用;
(2)综合成绩:4+3+1=1,
,
,
,
∵77.5>76.625>69.625,
∴丙将被录用;
(3)x=1,y=1或x=2,y=7或x=3,y=6或x=4,y=5时,乙被录用.(答案不唯一,写对一种即可)
故答案为:1,1.
本题考查了平均数和加权成绩的计算.平均数等于所有数据的和除以数据的个数.
15、2 km/h
【解析】
求的汽车原来的平均速度,路程为410km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了1h.等量关系为:原来时间﹣现在时间=1.
【详解】
设汽车原来的平均速度是x km/h,根据题意得:
,解得:x=2.
经检验:x=2是原方程的解.
答:汽车原来的平均速度2km/h.
16、(l)见解析;(2)①见解析;②平移方向为由到的方向,平移距离是个单位长度
【解析】
(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到;
(2)①利用点平移的规律写出A2、B2、C2的坐标,然后描点即可;
②根据平移的规律解答即可.
【详解】
解:(l)如图所示.
(2)①如图所示:
②连接,.
平移方向为由到的方向,平移距离是个单位长度.
本题考查了作图-平移及旋转:根据平移和旋转的性质,找到对应点,顺次连接得出平移和旋转后的图形.
17、四边形ABFC是平行四边形;证明见解析.
【解析】
易证△ABE≌△FCE(AAS),然后利用一组对边平行且相等可判断四边形ABFC是平行四边形.
【详解】
四边形ABFC是平行四边形;理由如下:
∵AB∥CD,
∴∠BAE=∠CFE,
∵E是BC的中点,
∴BE=CE,
在△ABE和△FCE中,
∴△ABE≌△FCE(AAS);
∴AB=CF,
又∵AB∥CF,
∴四边形ABFC是平行四边形.
考点:1平行四边形的判定;2全等三角形.
18、(1)EF=6﹣;(2)见解析
【解析】
(1)首先证明EG=CG,设BG=x,则EG=CG=x,根据BC=6,构建方程求出x,证明EF=BF,求出BF即可解决问题.
(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.利用全等三角形的性质证明△FAM是等边三角形即可解决问题.
【详解】
解:(1)如图1中,
∵四边形ABCD是菱形,
∵AB=BC=CD=AD=6,AD∥BC,
∴∠ABC=180°﹣∠BAD=60°,
∴△ABC是等边三角形,
∴∠ACB=60°,
∵∠ACE=15°,
∴∠ECG=∠ACB﹣∠ACE=45°,
∵EG⊥CG,
∴∠EGC=90°,
∴EG=CG,
设BG=x,则EG=CG=x,
∴x+x=6,
∴x=3﹣3,
∵四边形ABCD是菱形,
∴∠FBG=∠EBF=30°,
∵∠BEG=30°,
∴FB=FE,
∵BF===6﹣,
∴EF=6﹣.
(2)如图2,作CM⊥BC交FH的延长线于M,连接AM,AH.
∵EG⊥BC,MC⊥BC,
∴EF∥CM,
∴∠FEH=∠HCM,
∵∠EHF=∠CHM,EH=CH,
∴△EFH≌△CMH(ASA),
∴EF=CM,FH=HM,
∵EF=BF,
∴BF=CM,
∵∠ABF=∠ACM=30°,BA=CA,
∴△BAF≌△CAM(SAS),
∴AF=AM,∠BAF=∠CAM,
∴∠FAM=∠BAC=60°,
∴△FAM是等边三角形,
∵FH=HM,
∴AH⊥FM,∠FAH=∠FAM=×60°=30°,
∴AF=2FH.
本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先把各根式化为最简二次根式,再合并同类项即可.
【详解】
原式=-2+2
=3-2.
故答案为:3-2.
本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.
20、1
【解析】
分式方程去分母转化为整式方程,把x=2代入整式方程计算即可求出a的值.
【详解】
去分母得:a﹣x=ax﹣3,把x=2代入得:a﹣2=2a﹣3,解得:a=1.
故答案为:1.
本题考查了分式方程的解,始终注意分母不为0这个条件.
21、x≥﹣2且x≠1
【解析】
分析:
根据使分式和二次根式有意义的条件进行分析解答即可.
详解:
∵要使y=有意义,
∴ ,解得:且.
故答案为:且.
点睛:熟记:“二次根式有意义的条件是:被开方数是非负数;分式有意义的条件是:分母的值不为0”是正确解答本题的关键.
22、
【解析】
作AD⊥y轴于点D,由勾股定理求出OA的长,结合四边形是菱形可求出点C的坐标.
【详解】
作AD⊥y轴于点D.
∵点A的坐标是,
∴AD=1,OD=,
∴,
∵四边形是菱形,
∴AC=OA=2,
∴CD=1+2=3,
∴C(3, ).
故答案为:C(3, )
本题考查了菱形的性质,勾股定理以及图形与坐标,根据勾股定理求出OA的长是解答本题的关键.
23、∠B=∠1或
【解析】
此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.
【详解】
此题答案不唯一,如∠B=∠1或.
∵∠B=∠1,∠A=∠A,
∴△ADE∽△ABC;
∵,∠A=∠A,
∴△ADE∽△ABC;
故答案为∠B=∠1或
此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.
二、解答题(本大题共3个小题,共30分)
24、(1);;(2)当t=或t=4时,四边形DEGF是平行四边形.
【解析】
(1)当t=1.5时,如图①,重叠部分的面积是△FGH的面积,求出即可;当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,求出即可;
(2)进行分类讨论,列出方程即可求出t的值.
【详解】
解:当t=1.5时,如图①,重叠部分的面积是△FGH的面积,所以S=;
当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,所以S=×3×3-×2×2=.
(2)由题意可以求得
y1= ;y2=t(0≤t≤4).<
所以y1与y2关于t的函数图象如图③所示.
因为运动过程中,DE∥FG,所以当DE=FG时,四边形DEGF是平行四边形.
∵FG=AG,
∴DE=AG,
∴y1=y2.由图象可知,有两个t值满足条件:
①当0≤t≤2时,由4-2t=t,解得t=;
②当2
25、38m.
【解析】
作AE⊥CD交CD的延长线于点E,根据正切的定义分别求出CE、DE,结合图形计算即可.
【详解】
如图,作AE⊥CD交CD的延长线于点E,则四边形ABCE是矩形,
∴AE=BC=78m,
在Rt△ACE中,tan∠CAE=,
∴CE=AE⋅tan58°≈78×1.60=124.8(m)
在Rt△ADE中,tan∠DAE=,
∴DE=AE⋅tan48°≈78×1.11=86.58(m)
∴CD=CE−DE=124.8−86.58≈38(m)
答:乙建筑物的高度CD约为38m.
此题考查解直角三角形,三角函数,解题关键在于作辅助线和掌握三角函数定义.
26、解:(1)①△A1B1C1如图所示;
②△A1B1C1如图所示.
(1)连接B1B1,C1C1,得到对称中心M的坐标为(1,1).
【解析】
试题分析:(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可.
②根据网格结构找出A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可.
(1)连接B1B1,C1C1,交点就是对称中心M.
题号
一
二
三
四
五
总分
得分
批阅人
测试项目
测试成绩
甲
乙
丙
专业知识
74
87
90
语言能力
58
74
70
综合素质
87
43
50
相关试卷
这是一份湖北省武汉市青山区2024-2025学年九上数学开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖北省随州市高新区四校数学九上开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。