终身会员
搜索
    上传资料 赚现金

    湖北省武汉实验外国语学校2024年数学九上开学学业质量监测试题【含答案】

    立即下载
    加入资料篮
    湖北省武汉实验外国语学校2024年数学九上开学学业质量监测试题【含答案】第1页
    湖北省武汉实验外国语学校2024年数学九上开学学业质量监测试题【含答案】第2页
    湖北省武汉实验外国语学校2024年数学九上开学学业质量监测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉实验外国语学校2024年数学九上开学学业质量监测试题【含答案】

    展开

    这是一份湖北省武汉实验外国语学校2024年数学九上开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)分式①,②,③,④中,最简分式有( )
    A.1个B.2个C.3个D.4个
    2、(4分)如图,平行四边形的周长为40,的周长比的周长多10,则为( )
    A.5B.20C.10D.15
    3、(4分)在△ABC中,D、E分别是BC、AC中点,BF平分∠ABC.交DE于点F.AB=8,BC=6,则EF的长为( )
    A.1B.2C.3D.4
    4、(4分)下列计算中正确的是( )
    A.B.C.D.
    5、(4分)某型号的汽车在路面上的制动距离s=,其中变量是( )
    A. s v2 B.sC.vD. s v
    6、(4分)如果一个多边形的内角和是它外角和的倍,那么这个多边形的边数为( )
    A.B.C.D.
    7、(4分)下列各式计算正确的是( )
    A.+=B.2﹣=
    C.D.÷=
    8、(4分)用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是( )
    A.(x+2)2=2B.(x﹣2)2=﹣2C.(x﹣2)2=2D.(x﹣2)2=6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)函数中自变量x的取值范围是 .
    10、(4分)如图,在矩形ABCD中,对角线AC的垂直平分线分别交AB,CD于点E,F,连接AF,CE,如果∠BCE=26°,则∠CAF=_____
    11、(4分)如图,在正方形ABCD中,对角线AC,BD交于点O,E为OB上的点,∠EAB=15°,若OE=,则AB的长为__.
    12、(4分)已知,,则的值为___________.
    13、(4分)平行四边形ABCD中,∠A-∠B=20°,则∠A=______,∠B=_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.
    15、(8分)如图,中,、两点在对角线上,且.
    求证:.
    16、(8分)如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.
    (1)用关于x的代数式分别表示无盖纸盒的长和宽.
    (2)若纸盒的底面积为600cm2,求纸盒的高.
    (3)现根据(2)中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为279cm2的矩形图案A﹣F(如图3所示),每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于0.3cm,求x的取值范围和y的最小值.
    17、(10分)已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,
    (1)求证:△BCE≌△ACD;
    (2)求证:CF=CH;
    (3)判断△CFH的形状并说明理由.
    18、(10分)解不等式组.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)为了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体统计如下:
    则关于这20名学生阅读小时的众数是_____.
    20、(4分)若双曲线在第二、四象限,则直线y=kx+2不经过第 _____象限。
    21、(4分)设、是方程的两个实数根,则的值为_____.
    22、(4分)若n边形的每个内角都是,则________.
    23、(4分)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF,若△ABC的周长为10,则△DEF的周长为_______________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)人教版八年级下册第19章《一次函数》中“思考”:这两个函数的图象形状都是直线,并且倾斜程度相同,函数的图象经过原点,函数的图象经与y轴交于点(0,5),即它可以看作直线向上平移5个单位长度而得到。比较一次函数解析式与正比例函数解析式,容易得出:一次函数的图象可由直线通过向上(或向下)平移个单位得到(当b>0时,向上平移,当b<0时,向下平移)。
    (结论应用)一次函数的图象可以看作正比例函数 的图象向 平移 个单位长度得到;
    (类比思考)如果将直线的图象向右平移5个单位长度,那么得到的直线的函数解析式是怎样的呢?我们可以这样思考:在直线上任意取两点A(0,0)和B(1,),将点A(0,0)和B(1,)向右平移5个单位得到点C(5,0)和D(6,),连接CD,则直线CD就是直线AB向右平移5个单位长度后得到的直线,设直线CD的解析式为:,将C(5,0)和D(6,)代入得到:解得,所以直线CD的解析式为:;①将直线向左平移5个单位长度,则平移后得到的直线解析式为 .②若先将直线向左平移4个单位长度后,再向上平移5个单位长度,得到直线,则直线的解析式为: .
    (拓展应用)已知直线:与直线关于x轴对称,求直线的解析式.
    25、(10分)抛物线经过点、两点.
    (1)求抛物线顶点D的坐标;
    (2)抛物线与x轴的另一交点为A,求的面积.
    26、(12分)直线是同一平面内的一组平行线.
    (1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;
    (2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.
    ①求证:;
    ②设正方形的面积为,求证.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    利用约分可对各分式进行判断.
    【详解】
    ①是最简分式;
    ②,故不是最简分式;
    ③,故不是最简分式;
    ④是最简分式;
    所以,最简分式有2个,
    故选:B.
    本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.
    2、A
    【解析】
    由于平行四边形的对角线互相平分,那么△AOB、△BOC的周长差,实际是AB、BC的差,结合平行四边形的周长,即可得解.
    【详解】
    在平行四边形ABCD中,
    AO=OC,AB=CD,AD=BC,
    ∵△AOB的周长比△BOC的周长少10cm,
    ∴BC+OB+OC-(AB+OB+OA)=10cm,
    ∴BC-AB=10cm,
    ∵平行四边形ABCD的周长是40cm,
    ∴AB+BC+CD+AD=40cm,
    ∴BC+AB=20cm,
    ∴AB=5cm.
    故选A.
    本题考查平行四边形的性质,比较简单,关键是利用平行四边形的性质解题:平行四边形的对角线互相平分.​
    3、A
    【解析】
    利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长,易求EF的长度.
    【详解】
    ∵在△ABC中,D、E分别是BC、AC的中点,AB=8,
    ∴DE∥AB,DE=AB=3.
    ∴∠EDC=∠ABC.
    ∵BF平分∠ABC,
    ∴∠EDC=2∠FBD.
    ∵在△BDF中,∠EDC=∠FBD+∠BFD,
    ∴∠DBF=∠DFB,
    ∴FD=BD=BC=×6=2.
    ∴FE=DE-DF=3-2=3.
    故选A.
    本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
    4、D
    【解析】
    分析:根据二次根式的加减法则对各选项进行逐一计算即可.
    详解:A、与不是同类项,不能合并,故本选项错误;
    B、与不是同类项,不能合并,故本选项错误;
    C、3与不是同类项,不能合并,故本选项错误;
    D、=,故本选项正确.
    故选:D.
    点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.
    5、D
    【解析】
    根据变量是可以变化的量解答即可.
    【详解】
    解:∵制动距离S=,
    ∴S随着V的变化而变化,
    ∴变量是S、V.
    故选:D.
    本题考查常量与变量,是函数部分基础知识,常量是不可变化的常数,变量是可以变化的,一般用字母表示.
    6、B
    【解析】
    根据多边形的内角和公式(n−2)⋅110°与外角和定理列出方程,然后求解即可.
    【详解】
    解:设这个多边形是n边形,
    根据题意得,(n−2)⋅110°=3×360°,
    解得n=1.
    故选B.
    本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.
    7、B
    【解析】
    A选项中,因为,所以A中计算错误;
    B选项中,因为,所以B中计算正确;
    C选项中,因为,所以C中计算错误;
    D选项中,因为,所以D中计算错误.
    故选B.
    8、C
    【解析】
    按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.
    【详解】
    解:x2﹣4x+2=0,
    x2﹣4x=﹣2,
    x2﹣4x+4=﹣2+4,
    (x﹣2)2=2,
    故选:C.
    本题主要考查配方法,掌握完全平方公式是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.
    【详解】
    解:要使在实数范围内有意义,必须.
    10、29°.
    【解析】
    【分析】先证明△AOE≌△COF,得出OE=OF,再根据EF垂直平分AC,得出四边形AFCE为菱形,然后再根据菱形对角线的性质结合∠BCE=26°进行求解即可得.
    【详解】∵EF垂直平分AC,
    ∴OA=OC,
    ∵四边形ABCD为矩形,
    ∴CD∥AB,∠BCD=90°,
    ∴∠EAO=∠FCO,
    又∵∠AOE=∠COF,
    ∴△AOE≌△COF,
    ∴OE=OF,
    ∴四边形AFCE为平行四边形,
    又∵EF垂直AC,
    ∴平行四边形AFCE为菱形,
    ∴∠CAF=∠FAE,∠FAE=∠FCE,
    ∵∠BCE=26°,
    ∴∠FCE=90°-∠BCE=64°,
    ∴∠CAF=32°,
    故答案为32°.
    【点睛】本题考查了矩形的性质、菱形的判定与性质,熟练掌握菱形的判定与性质是解题的关键.
    11、3
    【解析】
    根据正方形的性质得到OA=OB,∠AOB=90°,则△OAB为等腰直角三角形,所以∠OAE=45°-∠EAB=30°,在Rt△AOE中利用含30度的直角三角形三边的关系得到OA=3,然后利用等腰直角三角形的性质得到AB的长.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴OA=OB,∠AOB=90°,
    ∴∠OAB=45°,
    ∴∠OAE=45°-∠EAB=45°-15°=30°,
    在Rt△AOE中,OA=OE=×=3,
    在Rt△OAB中,AB=OA=3.
    故答案为3.
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.
    12、1
    【解析】
    将写成(x+y)(x-y),然后利用整体代入求值即可.
    【详解】
    解:∵,,
    ∴,
    故答案为:1.
    本题考查了平方差公式的应用,将写成(x+y)(x-y)形式是代入求值在关键.
    13、100°, 80°
    【解析】
    根据平行四边形的性质得出AD∥BC,求出∠A+∠B=180°,解方程组求出答案即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠A+∠B=180°,
    ∵∠A-∠B=20°,
    ∴∠A=100°,∠B=80°,
    故答案为:100°,80°.
    本题考查了平行四边形的性质,能根据平行线得出∠A+∠B=180°是解此题的关键,注意:平行四边形的对边平行.
    三、解答题(本大题共5个小题,共48分)
    14、见解析,
    【解析】
    要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.
    【详解】
    证明:由折叠得:BC=EC,∠B=∠AEC,
    ∵矩形ABCD,
    ∴BC=AD,∠B=∠ADC=90°,
    ∴EC=DA,∠AEC=∠ADC=90°,
    又∵∠AFD=∠CFE,
    ∴△ADF≌△CEF (AAS)
    ∴∠DAE=∠ECD.
    本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.
    15、见解析
    【解析】
    证明△ADF≌△CBE,根据全等三角形的对应角相等即可证得∠AFD=∠CEB,进而得出∠AFE=∠CEF,即可得出结论.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AD∥CB,AD=CB.
    ∴∠ADF=∠CBE.
    在△ABE和△CDF中
    ∴△ADF≌△CBE(SAS),
    ∴∠AFD=∠CEB,
    ∵∠AFE=180°-∠AFD,∠CEF=180°-∠CEB,
    ∴∠AFE=∠CEF,
    ∴.
    本题考查了平行四边形的性质,全等三角形和平行线的判定,理解同位角相等两直线平行是解题关键.
    16、(1)长,宽,(2)高为5cm,(3)x的取值范围为:,y的最小值为1.
    【解析】
    根据长两个小正方形的长,宽两个小正方形的宽即可得到答案,
    根据面积长宽,列出关于x的一元二次方程,解之即可,
    设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,关于x的一元一次不等式,解之即可,根据面积长宽,列出y关于x的反比例函数,根据反比例函数的增减性求最值.
    【详解】
    根据题意得:长,宽,
    根据题意得:
    整理得:
    解得:舍去,,
    纸盒的高为5cm,
    设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,


    解得:,
    根据题意得:,

    y随着x的增大而减小,
    当取到最大值时,y取到最小值,
    即当时,,
    x的取值范围为:,y的最小值为1.
    本题考查二次函数的应用,一元二次方程的应用,解题的关键:(2)根据等量关系列出一元二次方程(3)根据数量关系列出不等式和反比例函数并利用反比例函数的增减性求最值.
    17、(1)证明见解析;(2)证明见解析;(3)△CFH是等边三角形,理由见解析.
    【解析】
    (1)利用等边三角形的性质得出条件,可证明:△BCE≌△ACD;
    (2)利用△BCE≌△ACD得出∠CBF=∠CAH,再运用平角定义得出∠BCF=∠ACH进而得出△BCF≌△ACH因此CF=CH.
    (3)由CF=CH和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH是等边三角形.
    【详解】
    解:(1)∵∠BCA=∠DCE=60°,
    ∴∠BCE=∠ACD.
    又BC=AC、CE=CD,
    ∴△BCE≌△ACD.
    (2)∵△BCE≌△ACD,
    ∴∠CBF=∠CAH.
    ∵∠ACB=∠DCE=60°,
    ∴∠ACH=60°.
    ∴∠BCF=∠ACH.
    又BC=AC,
    ∴△BCF≌△ACH.
    ∴CF=CH.
    (3)∵CF=CH,∠ACH=60°,
    ∴△CFH是等边三角形.
    本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.
    18、1≤x<.
    【解析】
    分别求出各不等式的解集,再求出其公共解集即可.
    【详解】
    解不等式①,得:x≥1,
    解不等式②,得:x<,
    所以不等式组的解集为1≤x<.
    本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    众数是一组数据中出现次数最多的数据,根据众数的定义就可以求出.
    【详解】
    在这一组数据中1出现了8次,出现次数最多,因此这组数据的众数为1.
    故答案为1.
    本题属于基础题,考查了确定一组数据的众数的能力.要明确定义.
    20、三
    【解析】
    分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.
    详解:∵反比例函数在二、四象限, ∴k<0, ∴y=kx+2经过一、二、四象限,即不经过第三象限.
    点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.
    21、-1
    【解析】
    根据根与系数的关系可得出,,将其代入中即可得出结论.
    【详解】
    ∵、是方程的两个实数根,
    ∴,,
    ∴.
    故答案为:-1.
    本题考查了根与系数的关系,牢记“两根之和等于,两根之积等于”是解题的关键.
    22、1
    【解析】
    根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.
    【详解】
    解:∵n边形的每个内角都是120°,
    ∴每一个外角都是180°-120°=10°,
    ∵多边形外角和为310°,
    ∴多边形的边数为310÷10=1,
    故答案为:1.
    此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.
    23、1
    【解析】
    解:根据三角形的中位线定理可得DE=AC,EF=AB,DF=BC
    所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为1
    故答案为:1.
    本题考查三角形的中位线定理.
    二、解答题(本大题共3个小题,共30分)
    24、【结论应用】y=x,下,1;
    【类比思考】①y=-6x-10;②y=-6x-3;
    【拓展应用】y=-2x-1.
    【解析】
    【结论应用】
    根据题目材料中给出的结论即可求解;
    【类比思考】
    ①在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移5个单位得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
    ②在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移4个单位长度,再向上平移5个单位长度得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
    【拓展应用】
    在直线:y=2x+1上任意取两点A(0,1)和B(1,5),作点A和B关于x轴的对称点C、D,根据关于x轴对称的点的规律得到C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式.
    【详解】
    解:【结论应用】一次函数y=x-1的图象可以看作正比例函数y=x的图象向下平移1个单位长度而得到.
    故答案为y=x,下,1;
    【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),
    将点A(0,0)和B(1,-6)向左平移5个单位得到点C(-5,0)和D(-4,-6),连接CD,则直线CD就是直线AB向左平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+b(k≠0),
    将C(-5,0)和D(-4,-6)代入得到:

    解得

    所以直线CD的解析式为:y=-6x-10.
    故答案为y=-6x-10;
    ②在直线y=-6x上任意取两点A(0,0)和B(1,-6),
    将点A(0,0)和B(1,-6)向左平移4个单位长度,再向上平移5个单位长度得到点C(-4,5)和D(-1,-1),连接CD,则直线CD就是直线AB向左平移4个单位长度,再向上平移5个单位长度后得到的直线,
    设直线CD的解析式为:y=kx+b(k≠0),
    将C(-4,5)和D(-1,-1)代入得到:
    解得
    所以直线的解析式为:y=-6x-3.
    故答案为y=-6x-3;
    【拓展应用】在直线:y=2x+1上任意取两点A(0,1)和B(1,5),
    则点A和B关于x轴的对称点分别为C(0,-1)或D(1,-5),连接CD,则直线CD就是直线AB关于x轴对称的直线,
    设直线CD的解析式为:y=kx+b(k≠0),
    将C(0,-1)或D(1,-5)代入得到:
    解得
    所以直线关于x轴对称的直线的解析式为y=-2x-1.
    本题考查了一次函数图象与几何变换,一次函数与二元一次方程(组),考查了学生的阅读理解能力与知识的迁移能力.理解阅读材料是解题的关键.
    25、(1)D(1,4);(2)6.
    【解析】
    试题分析:(1)利用待定系数法代入求出a,c的值,进而利用配方法求出D点坐标即可;
    (2)首先求出图象与x轴的交点坐标,进而求出△ABC的面积.
    试题解析:(1)由题意,得,
    解得,
    则y=-x2+2x+3=-(x-1)2+4,
    则D(1,4);
    (2)由题意,得-x2+2x+3=0,
    解得x1=-1,x2=3;
    则A(-1,0),
    又∵B(3,0)、C(0,3),
    ∴S△ABC=×4×3=6
    26、(1)9或5;(2)①见解析,②见解析
    【解析】
    (1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;
    ②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;
    (2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;
    ②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.
    【详解】
    解:(1)①如图,当点分别在上时,面积为:;
    ②如图,当点分别在上时,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠ABC=90°,
    ∴∠ABE+∠CBF=180°-90°=90°,
    ∵∠CBF+∠BCF=90°,
    ∴∠ABE=∠BCF,
    在△ABE和△BCF中

    ∴△ABE≌△BCF(AAS),
    ∴AE=BF=2,
    ∴AB=,
    ∴正方形ABCD的面积=AB2=5;
    综上所述,正方形ABCD的面积为9或5;
    (2)①证明:过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如图所示:则EF⊥l4,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠ABC=90°,
    ∴∠ABE+∠CBF=180°-90°=90°,
    ∵∠CBF+∠BCF=90°,
    ∴∠ABE=∠BCF,
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(AAS),
    ∴AE=BF,
    同理△CDM≌△BCF(AAS),
    ∴△ABE≌△CDM(AAS),
    ∴BE=DM,
    即h1=h2.
    ②解:由①得:AE=BF=h2+h2=h2+h1,
    ∵正方形ABCD的面积:S=AB2=AE2+BE2,
    ∴S=(h2+h1)2+h12=2h12+2h1h2+h3.
    本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.
    题号





    总分
    得分
    阅读时间(小时)
    2
    2.5
    3
    3.5
    4
    学生人数(名)
    1
    2
    8
    6
    3

    相关试卷

    湖北省黄冈市黄梅实验中学2024年数学九上开学学业质量监测试题【含答案】:

    这是一份湖北省黄冈市黄梅实验中学2024年数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河北石家庄石门实验学校2024-2025学年数学九上开学学业质量监测模拟试题【含答案】:

    这是一份河北石家庄石门实验学校2024-2025学年数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省深圳实验学校2024年九上数学开学学业质量监测模拟试题【含答案】:

    这是一份广东省深圳实验学校2024年九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map