河南省安阳内黄县联考2025届数学九上开学调研模拟试题【含答案】
展开
这是一份河南省安阳内黄县联考2025届数学九上开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)笔记本每本a元,买3本笔记本共支出y元,在这个问题中:
①a是常量时,y是变量;
②a是变量时,y是常量;
③a是变量时,y也是变量;
④a,y可以都是常量或都是变量.
上述判断正确的有( )
A.1个B.2个C.3个D.4个
2、(4分)若,则下列不等式中成立的是( )
A.B.C.D.
3、(4分)若代数式有意义,则实数x的取值范围是( )
A.x≥1B.x≥2C.x>1D.x>2
4、(4分)如图,中,,,将绕点逆时针旋转得到,若点的对应点落在边上,则旋转角为( )
A.B.C.D.
5、(4分)已知关于x的一元二次方程x2-x+k=0的一个根是2,则k的值是( )
A.-2B.2C.1D.1
6、(4分)在反比例函数 y 图象的每个象限内,y 随 x 的增大而减少,则 k 值可以是( )
A.3B.2C.1D.﹣1
7、(4分)不等式的解集在数轴上表示正确的是( )
A. B. C. D.
8、(4分)无论x取什么值,下面的分式中总有意义的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在等边中,cm,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动,如果点、同时出发,当以点、、、为顶点的四边形是平行四边形时,运动时间为____.
10、(4分)一次跳远中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有____人.
11、(4分)已知:如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=6,CD=4,则EF=______.
12、(4分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.
13、(4分)正比例函数图象与反比例函数图象的一个交点的横坐标为,则______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,,D在边AC上,且.
如图1,填空______,______
如图2,若M为线段AC上的点,过M作直线于H,分别交直线AB、BC与点N、E.
求证:是等腰三角形;
试写出线段AN、CE、CD之间的数量关系,并加以证明.
15、(8分)某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.
(1)求甲、乙两种商品的进价各是多少元?
(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.
16、(8分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.
(1)当原点正方形边长为4时,
①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;
②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;
(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.
17、(10分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:
经过计算,甲进球的平均数为8,方差为3.2.
(1)求乙进球的平均数和方差;
(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?
18、(10分)(1)计算:(+5)(-5).
(2)计算.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.
20、(4分)若关于x的分式方程+2无解,则m的值为________.
21、(4分)计算=________________.
22、(4分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值_____.
23、(4分)如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(,-1),则不等式mx+2<kx+b<0的解集为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).
(1)判断△ABC的形状,请说明理由.
(2)求△ABC的周长和面积.
25、(10分)计算:
26、(12分)计算:(1)3×(1+)-;(2)-2×|-1|-
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由题意得:y=3a,
此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,
故选B.
2、C
【解析】
根据不等式的性质分析判断.
【详解】
A、在不等式的两边同时减去1,即a-1>b-1.故本选项错误;
B、在不等式的两边同时乘以1,即1a>1b.故本选项错误;
C、在不等式的两边同时乘以-1,不等号的方向发生改变,即-1a2.故本选项错误.
本题主要考查了不等式的基本性质.在解答不等式的问题时,应密切关注符号的方向问题.
3、B
【解析】
根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x的不等式组,解不等式组即可得.
【详解】
由题意得
,
解得:x≥2,
故选B.
本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.
4、C
【解析】
先根据等腰三角形的性质求得∠ABC=∠C=70°,继而根据旋转的性质即可求得答案.
【详解】
∵AB=AC,∠A=40°,
∴∠ABC=∠C=(180°-∠A)=×140°=70°,
∵△EBD是由△ABC旋转得到,
∴旋转角为∠ABC=70°,
故选C.
本题考查了等腰三角形的性质,旋转的性质,熟练掌握相关知识是解题的关键.
5、A
【解析】
知道方程的一根,把x=2代入方程中,即可求出未知量k.
【详解】
解:将x=2代入一元二次方程x2-x+k=0,
可得:4-2+k=0,
解得k=-2,
故选:A.
本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.
6、A
【解析】
根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,则可得答案 .
【详解】
根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,所以k>2,结合选项选择A.
本题考查反比例函数图象的性质,解题的关键是掌握反比例函数图象的性质.
7、A
【解析】
先求出不等式的解集,再在数轴上表示出来即可.
【详解】
移项得,,
合并同类项得,,
的系数化为1得,,
在数轴上表示为:
.
故选:.
本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.
8、B
【解析】
根据分母等于0,分式无意义;分母不等于0,分式有意义对各选项举反例判断即可
【详解】
解:A.当x=0时,分式无意义,故本选项错误;
B. 对任意实数,x2+1≠0,分式有意义,故本选项正确;
C.当x=0时,分母都等于0,分式无意义,故本选项错误;
D. 当x=-1时,分式无意义,故本选项错误.
故选B
本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1或3
【解析】
用t表示出AE和CF,当AE=CF时,以点、、、为顶点的四边形是平行四边形,
据此求解即可.
【详解】
解:设运动时间为t,则AE=t cm,BF=2t cm,
∵是等边三角形,cm,
∴BC=3 cm,
∴CF= ,
∵AG∥BC,
∴AE∥CF,
∴当AE=CF时,以点、、、为顶点的四边形是平行四边形,
∴=t,
∴2t-3=t或3-2t=t,
∴t=3或t=1,
故答案是:1或3.
本题考查了平行四边形的判定,平行四边形有很多判定定理,结合题目条件找到所缺的合适的判定条件是解题的关键.
10、20
【解析】
根据频率的计算公式即可得到答案.
【详解】
解:
所以可得参加比赛的人数为20人.
故答案为20.
本题主要考查频率的计算公式,这是数据统计的重点知识,必须掌握.
11、
【解析】
连接BD,利用勾股定理列式求出BD,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.
【详解】
解:如图,连接BD,
∵∠C=90°,BC=6,CD=4,
∴BD===2,
∵E、F分别为AB、AD的中点,
∴EF是△ABD的中位线,
∴EF=BD=×2=.
故答案为:.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记定理是解题的关键,难点在于作辅助线构造出三角形.
12、1
【解析】
试题解析:∵a是一元二次方程x2-1x+m=0的一个根,-a是一元二次方程x2+1x-m=0的一个根,
∴a2-1a+m=0①,a2-1a-m=0②,
①+②,得2(a2-1a)=0,
∵a>0,
∴a=1.
考点:一元二次方程的解.
13、4
【解析】
把x=代入各函数求出对应的y值,即可求解.
【详解】
x=代入得
x=代入得
∴4
此题主要考查反比例函数的性质,解题的关键是根据题意代入函数关系式进行求解.
三、解答题(本大题共5个小题,共48分)
14、(1)36,72;(2)①证明见解析;②CD=AN+CE,证明见解析.
【解析】
(1)根据题意可得△ABC,△BCD,△ABD都是等腰三角形,根据等腰三角形的性质可得∠A=∠DBA=∠DBC=∠ABC=∠C,然后利用三角形的内角和即可得解;
(2)①通过“角边角”证明△BNH≌△BEH,可得BN=BE,即可得证;
②根据题意可得AN=AB﹣BN=AC﹣BE,CE=BE﹣BC,CD=AC﹣AD=AC﹣BD=AC﹣BC,则可得CD=AN+CE.
【详解】
解:(1)∵BD=BC,
∴∠BDC=∠C,
∵AB=AC,
∴∠ABC=∠C,
∴∠A=∠DBC,
∵AD=BD,
∴∠A=∠DBA,
∴∠A=∠DBA=∠DBC=∠ABC=∠C,
∵∠A+∠ABC+∠C=5∠A=180°,
∴∠A=36°,∠C=72°;
故答案为36,72;
(2)①∵∠A=∠ABD=36°,∠B=∠C=72°,
∴∠ABD=∠CBD=36°,
∵BH⊥EN,
∴∠BHN=∠EHB=90°,
在△BNH与△BEH中,
,
∴△BNH≌△BEH(ASA),
∴BN=BE,
∴△BNE是等腰三角形;
②CD=AN+CE,理由:由①知,BN=BE,
∵AB=AC,
∴AN=AB﹣BN=AC﹣BE,
∵CE=BE﹣BC,
∴AN+BE=AC﹣BC,
∵CD=AC﹣AD=AC﹣BD=AC﹣BC,
∴CD=AN+CE.
本题主要考查等腰三角形的判定与性质,全等三角形的判定与性质.解此题的关键在于熟练掌握其知识点.
15、(1)甲、乙两种商品的进价各是40元/件、36元/件;(2)该商店获得的最大利润是2840元.
【解析】
(1)设甲种商品的进价为x元/件,则乙种商品的进价为0.9x元/件,根据题意列出分式方程即可求解;
(2)设甲种商品购进m件,则乙种商品购进(80-m)件,根据题意写出总利润w元,再根据一次函数的图像与性质即可求解.
【详解】
(1)设甲种商品的进价为x元/件,则乙种商品的进价为0.9x元/件,
,
解得,x=40,
经检验,x=40是原分式方程的解,
∴0.9x=36,
答:甲、乙两种商品的进价各是40元/件、36元/件.
(2)设甲种商品购进m件,则乙种商品购进(80-m)件,总利润为w元,
w=(80-40)m+(70-36)(80-m)=6m+2720,
∵80-m≥3m,
∴m≤20,
∴当m=20时,w取得最大值,此时w=2840,
答:该商店获得的最大利润是2840元.
此题主要考查分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是根据题意列出方程与函数关系式.
16、(1)①P2,P3 ,②1≤x≤或≤x≤-1;(2)2-≤a≤1.
【解析】
(1)由已知结合图象,找到点P所在的区域;
(2)分别求出点A与B的坐标,由线段AB的位置,通过做圆确定正方形的位置.
【详解】
解:(1)①∵原点正方形边长为4,
当P1(0,0)时,正方形上与P1的最小距离是2,故不存在Q使P1Q≤1;
当P2(-1,1)时,存在Q(-2,1),使P2Q≤1;
当P3(3,2)时,存在Q(2,2),使P3Q≤1;
故答案为P₂、P₃;
②如图所示:阴影部分就是原点正方形友好点P的范围,
由计算可得,点P横坐标的取值范围是:
1≤x≤2+或-2-≤x≤-1;
(2)一次函数y=-x+2的图象分别与x轴,y轴交于点A,B,
∴A(0,2),B(2,0),
∵线段AB上存在原点正方形的友好点,
如图所示:
原点正方形边长a的取值范围2-≤a≤1.
本题考查一次函数的性质,新定义;能够将新定义的内容转化为线段,圆,正方形之间的关系,并能准确画出图形是解题的关键.
17、(1)乙平均数为8,方差为0.8;(2)乙.
【解析】
(1)根据平均数、方差的计算公式计算即可;
(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.
【详解】
(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;
(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.
本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.
18、(1)-22;(2)2
【解析】
(1)直接利用二次根式的乘法运算法则计算得出答案;
(2)首先化简二次根式,进而计算得出答案.
【详解】
解:(1)原式=3﹣25=﹣22;
(2)原式=2﹣
=2.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据锐角三角函数的定义以及正方形的性质即可求出答案.
【详解】
解:设正方形的边长为x,
∴CE=ED=x,
∴AE=AC-CE=12-x,
在Rt△ABC中,
,
在Rt△ADE中,
,
∴,
∴解得:x=,
故答案为:.
本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.
20、1
【解析】
分析:把原方程去分母化为整式方程,求出方程的解得到x的值,由分式方程无解得到分式方程的分母为0,求出x的值,两者相等得到关于m的方程,求出方程的解即可得到m的值.
详解:
去分母得:x﹣2=m+2(x﹣3),整理得:x=4﹣m.
∵原方程无解,得到x﹣3=0,即x=3,∴4﹣m=3,解得:m=1.
故答案为1.
点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.
21、
【解析】
直接利用二次根式的乘法运算法则计算得出答案.
【详解】
原式=,
故答案为:.
本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.
22、1.
【解析】
根据a+b=3,ab=2,应用提取公因式法,以及完全平方公式,求出代数式a3b+2a2b2+ab3的值是多少即可.
【详解】
∵a+b=3,ab=2,
∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=2×32=1
故答案为:1.
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
23、﹣4<x<﹣
【解析】
根据函数的图像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是﹣4<x<﹣.
故答案为﹣4<x<﹣.
二、解答题(本大题共3个小题,共30分)
24、(1)△ABC是直角三角形(2)5
【解析】
(1)根据点A、B、C的坐标求出AB、AC、BC的长,然后利用勾股定理逆定理判断为直角三角形;
(2)根据三角形的周长和面积公式解答即可.
【详解】
(1)△ABC是直角三角形,
由勾股定理可得:,
,
,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,
(2)△ABC的周长为:AC+BC+AB=,
△ABC的面积为:.
本题考查勾股定理逆定理,解题的关键是掌握勾股定理逆定理.
25、1-
【解析】
根据实数的性质进行化简即可求解.
【详解】
解:原式= +2- -1-
=1-
此题主要考查实数的运算,解题的关键是熟知实数的性质.
26、(1) ;(2).
【解析】
(1)先去括号,并把化简,然后合并同类二次根式即可;
(2)先去绝对值符号,再算乘法和乘方,然后合并化简即可.
【详解】
(1)原式=3+3-2=;
(2)原式=-2×(1-)-
=-2+-3
=.
本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.
题号
一
二
三
四
五
总分
得分
批阅人
甲
10
6
10
6
8
乙
7
9
7
8
9
相关试卷
这是一份2024-2025学年河南省安阳市安阳一中学数学九上开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年河南省安阳市内黄县九上数学期末综合测试模拟试题含答案,共8页。
这是一份河南省安阳内黄县联考2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知,则的值是,下列事件是必然事件的是等内容,欢迎下载使用。