福建省泉州台商投资区2025届九上数学开学质量跟踪监视试题【含答案】
展开
这是一份福建省泉州台商投资区2025届九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=﹣2x+3的图象不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)若,则的取值范围是( )
A.B.C.D.
3、(4分)学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为( )
A.﹣=100B.﹣=100
C.﹣=100D.﹣=100
4、(4分)下列函数中,随的增大而减少的函数是( )
A.B.C.D.
5、(4分)某篮球队 10 名队员的年龄结构如下表:
已知该队队员年龄的中位数为 21.5,则众数是( )
A.21 岁B.22 岁C.23 岁D.24 岁
6、(4分)如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于( )
A.2B.C.4D.4
7、(4分)一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是( )
A.3B.4C.6D.12
8、(4分)如图,正方形的边长为2,点为的中点,连接,将沿折叠,点的对应点为.连接CF,则的长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分式方程的解是_____.
10、(4分)如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60°,连结DF,则DF的长为_____.
11、(4分)如图,是用形状、大小完全相同的等腰梯形镶嵌的图案,则这个图案中的等腰三角形的底角(指锐角)的度数是_____.
12、(4分)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.
13、(4分)如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在学校组织的知识竞赛活动中,老师将八年级一班和二班全部学生的成绩整理并绘制成如下统计表:
(1)现已知一班和二班的平均分相同,请求出其平均分.
(2)请分别求出这两班的中位数和众数,并进一步分析这两个班级在这次竞赛中成绩的情况.
15、(8分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD
(1)求AD的长;
(2)若∠C=30°,求CD的长.
16、(8分)计算:
(1)
(2)已知a=+2,b=﹣2,求a2﹣b2的值.
17、(10分)计算:()0﹣|﹣2|﹣.
18、(10分)如图,在中,于点E点,延长BC至F点使,连接AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若,,,求AE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD为等边三角形,点E为△BCD围成的区域(包括各边)内的一点,过点E作EM∥AB,交直线AC于点M,作EN∥AC,交直线AB于点N,则的最大值为_____.
20、(4分)已知方程组,则x+y的值是____.
21、(4分)一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.
22、(4分)如图,为的中位线,平分,交于,,则的长为_______。
23、(4分)已知一组数据,,,,,,则这组数据的众数是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).
(1)求该厂第2个月的发电量及今年下半年的总发电量;
(2)求y关于x的函数关系式;
(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)?
25、(10分)如图,已知:EG∥AD,∠1=∠G,试说明 AD平分∠BAC.
26、(12分)△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题解析:∵k=-2<0,
∴一次函数经过二四象限;
∵b=3>0,
∴一次函数又经过第一象限,
∴一次函数y=-x+3的图象不经过第三象限,
故选C.
2、D
【解析】
根据分式的概念可知使分式有意义的条件为a≠0,根据二次根式被开方数大于等于0可知,使该等式成立的条件为a>0且1-a≥0,故a的取值范围是0<a≤1.
【详解】
解:∵,
∴,
∴,
故选:D.
本题主要考査二次根式的概念和分式的概念,需注意在任何时候都要考虑分母不为0,这也是本题最容易出错的地方.
3、B
【解析】
【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.
【详解】科普类图书平均每本的价格是x元,则可列方程为:
﹣=100,
故选B.
【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
4、D
【解析】
根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.
【详解】
A、B、C选项中的函数解析式k值都是正数,y随x的增大而增大,
D选项y=-2x+8中,k=-2<0,y随x的增大而减少.
故选D.
本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
5、A
【解析】
先根据数据的总个数及中位数得出、,再利用众数的定义求解可得.
【详解】
共有10个数据,
,
又该队队员年龄的中位数为,即,
,
、,
则这组数据的众数为.
故选:.
本题主要考查了中位数、众数,解题的关键是根据中位数的定义得出、的值.
6、C
【解析】
解:设,可求出,由于对角线垂直,计算对角线乘积的一半即可.
【详解】
设A(a,),可求出D(2a,),
∵AB⊥CD,
∴S四边形ACBD=AB∙CD=×2a×=4,
故选:C.
本题主要考查了反比例函数系数k的几何意义以及线段垂直平分线的性质,解题的关键是设出点A和点B的坐标.
7、C
【解析】
首先根据这个正多边形的每个内角的度数都等于相邻外角的2倍,可得:这个正多边形的外角和等于内角和的2倍;然后根据这个正多边形的外角和等于310°,求出这个正多边形的内角和是多少,进而求出该正多边形的边数是多少即可.
【详解】
310°×2÷180°+2
=720°÷180°+2
=4+2
=1
∴该正多边形的边数是1.
故选C.
此题主要考查了多边形的内角与外角的计算,解答此题的关键是要明确:(1)多边形内角和定理:(n-2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为310°.
8、D
【解析】
连接AF交BE于点O,过点F作MN⊥AB,由勾股定理可求BE的长,由三角形面积公式可求AO的长,由折叠的性质可得AO=OH= ,AB=BF=2,由勾股定理可求BN,FN的长,由矩形的性质可求FM,MC的长,由勾股定理可求CF的长.
【详解】
解:如图,连接AF交BE于点O,过点F作MN⊥AB,
∵AB∥CD,MN⊥AB,
∴MN⊥CD,
∵AB=2=AD,点E是AD中点,
∴AE=1,
∴EB=,
∵S△ABE=×AB×AE=×BE×AO,
∴2×1=AO,
∴AO=,
∵将△ABE沿BE折叠,点A的对应点为F,
∴AO=OH=,AB=BF=2,
∴AF=,
∵AF2-AN2=FN2,BF2-BN2=FN2,
∴AF2-AN2=BF2-BN2,
∴-(2-BN)2=4-BN2,
∴BN=,
∴FN=,
∵MN⊥AB,MN⊥CD,∠DCB=90°,
∴四边形MNBC是矩形,
∴BN=MC=,BC=MN=2,
∴MF=,
∴CF=.
故选:D.
本题考查了正方形的性质,矩形的判定,勾股定理,利用勾股定理列出等式求线段的长是本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
两边都乘以x(x-1),化为整式方程求解,然后检验.
【详解】
原式通分得:
去分母得:
去括号解得,
经检验,为原分式方程的解
故答案为
本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
10、
【解析】
延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,由菱形的性质和勾股定理再结合已知条件可求出NF,DN的长,在直角三角形DNF中,再利用勾股定理即可求出DF的长.
【详解】
延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,
∵四边形ABCD和四边形BEFG都是菱形,
∴GF∥BE,EF∥AM,
∴四边形AMFE是平行四边形,
∴AM=EF=2,MF=AE=AB+BE=5+2=7,
∴DM=AD﹣AM=5﹣2=3,
∵∠A=60°,
∴∠DAH=30°,
∴MN=DM=,
∴DN==,NF=MF﹣MN=,
在Rt△DNF中,DF==,
故答案为:.
本题考查了菱形的性质、平行四边形的判定和性质、含30°直角三角形的性质以及勾股定理的运用,正确作出图形的辅助线是解题的关键.
11、60°
【解析】
本题主要考查了等腰梯形的性质,平面镶嵌(密铺).关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
【详解】
解:由图可知,铺成的一个图形为平行四边形,而原图形为等腰梯形,则现铺成的图形的底角为:180°÷3=60°.
故答案为60°.
12、6
【解析】
根据三角形的中位线性质可得,
13、18
【解析】
利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长
【详解】
∵CE平分∠BCD交AD边于点E,
∴.∠ECD=∠ECB
∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC
∴∠DEC=∠ECB,
∴∠DEC=∠DCE
∴DE=DC
∵AD=2AB
∴AD=2CD
∴AE=DE=AB=3
∴AD=6
∴四边形ABCD的周长为:2×(3+6)=18.
故答案为:18.
此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行
三、解答题(本大题共5个小题,共48分)
14、 (1)平均分为80分;(2)一班的众数为90分、中位数为80分;二班的众数为70分、中位数为80分;分析见解析.
【解析】
根据平均数的定义计算可得;
根据众数和中位数的定义分别计算,再从平均分和得分的中位数相同的前提下合理解答即可.
【详解】
解:(1)一班的平均分为=80(分),
二班的平均分为 =80(分);
(2)一班的众数为90分、中位数为=80分;
二班的众数为70分、中位数为=80(分);
由于一、二班的平均分和得分的中位数均相同,而二班得分90分及以上人数多于一班,
所以二班在竞赛中成绩好于一班.
本题主要考查众数、中位数和平均数,解题的关键是掌握众数、中位数和平均数的定义.
15、 (1) 2;(2)
【解析】
分析:(1)根据等角对等边即可证得BF=AB,然后根据FC=BC-BF即可求解;(2)过B作AF的垂线BG,垂足为H. 由(1)得:四边形AFCD为平行四边形且AB=BF=3,在RT△BHF中求得BH的长,利用勾股定理即可求解.
详解:(1)AD∥BC,AE∥CD,
∴四边形AFCD是平行四边形
∴AD=CF
∵AF平分∠BAD
∴∠BAF=∠DAF
∵AD∥BC
∴∠DAF=∠AFB
∴∠BAF=∠AFB
∴AB=BF
∵AB=3,BC=5
∴BF=3
∴FC=5-3=2
∴AD=2.
(2)如图,
过点B作BH⊥AF交AF于H
由(1)得:四边形AFCD为平行四边形且AB=BF=3,
∴AF=CD,AF∥CD
∴FH=AH,∠AFB=∠C
∵∠C=30°
∴∠HFB=30°
∴BF=2BH
∵BF=3
∴BH=
∴FH=,
∴AF=2×=3
∴CD=3.
点睛:本题考查了平行四边形的性质与判定,勾股定理的应用,解本题的关键是正确的作出辅助线.
16、(1)原式=5;(2)原式=8
【解析】
(1)根据完全平方公式、二次根式的乘法和加法可以解答本题;
(2)根据a、b的值可以求得a+b、a-b的值,从而可以求得所求式子的值.
【详解】
解:(1)
=
=5
(2)∵,
∴,
∴
=
=
本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.
17、-1-
【解析】
根据零指数幂、实数的绝对值和二次根式的性质分别计算各项,再合并即可.
【详解】
解:原式=1+-2-2=-1-
本题考查了实数的混合运算,熟知实数的混合运算法则是求解的关键.
18、(1)见解析;(2)
【解析】
试题分析:(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.
(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.
试题解析:(1)证明:∵CF=BE,
∴CF+EC=BE+EC.
即 EF=BC.
∵在▱ABCD中,AD∥BC且AD=BC,
∴AD∥EF且AD=EF.
∴四边形AEFD是平行四边形.
∵AE⊥BC,
∴∠AEF=90°.
∴四边形AEFD是矩形;
(2)∵四边形AEFD是矩形,DE=1,
∴AF=DE=1.
∵AB=6,BF=10,
∴AB2+AF2=62+12=100=BF2.
∴∠BAF=90°.
∵AE⊥BF,
∴△ABF的面积=AB•AF=BF•AE.
∴AE=.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
作辅助线,构建30度的直角三角形将转化为NH,将,即:过A点作AM∥BC,过作交的延长线于点,,由△BCD围成的区域(包括各边)内的一点到直线AP的最大值时E在D点时,通过直角三角形性质和勾股定理求出DH’即可得到结论.
【详解】
解:过A点作AP∥BC,过作交的延长线于点,
,,
四边形是平行四边形,
设,,
∵∠ACB=90°,∠CAB=60°,
∴∠CAM=90°,∠NAH=30°,
中,,
∵NE∥AC,NH∥AC,
∴E、N、H在同一直线上,
,
由图可知:△BCD围成的区域(包括各边)内的一点到直线AM距离最大的点在D点,
过D点作,垂足为.
当在点时,=取最大值.
∵∠ACB=90°,∠A=60°,AB=6,,
∴AC=3,AB=,四边形ACGH’是矩形,
∴,
∵△BCD为等边三角形,,
∴=,
∴,
∴的最大值为,
故答案为.
本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度.解题关键是根据在直角三角形中,30°角所对的边等于斜边的一半对进行转化,使得最大值问题转化为点到直线的距离解答.
20、﹣1.
【解析】
根据题意,①-②即可得到关于x+y的值
【详解】
,
①﹣②得到:﹣3x﹣3y=6,
∴x+y=﹣1,
故答案为﹣1.
此题考查解二元一次方程组,难度不大
21、x>-2
【解析】
试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.
考点:一次函数与一元一次不等式.
22、
【解析】
根据三角形中位线定理得到EF=BC=6,根据平行线的性质和角平分线的定义证明ED=EB,计算即可.
【详解】
∵EF为△ABC的中位线,
∴EF∥BC,EF=BC=6,
∴∠EDB=∠DBC,
∵BD平分∠ABC,
∴∠EBD=∠DBC,
∴∠EDB=∠EBD,
∴ED=EB=AB=4,
∴DF=EF−ED=2,
故答案为:2
此题考查三角形中位线定理,解题关键在于得到EF=BC=6
23、45
【解析】
根据众数的概念:一组数据中出现次数最多的数值即为众数,即可得到答案
【详解】
解:∵这组数据中45出现两次,出现次数最多
∴众数是45
故答案为45
本题考查众数的概念,熟练掌握众数的概念为解题关键
二、解答题(本大题共3个小题,共30分)
24、(1)该厂第4个月的发电量为1540万千瓦;今年下半年的总发电量为1万千瓦;(4)4140.(3)3个月
【解析】
试题分析:(1)由题意可以知道第1个月的发电量是300×5千瓦,第4个月的发电量为300×4+300(1+40%),第3个月的发电量为300×3+300×4×(1+40%),第4个月的发电量为300×4+300×3×(1+40%),第5个月的发电量为300×1+300×4×(1+40%),第4个月的发电量为300×5×(1+40%),将4个月的总电量加起来就可以求出总电量.
(4)由总发电量=各台机器的发电量之和根据(1)的结论设y与x之间的关系式为y=kx+b建立方程组求出其解即可.
(3)由总利润=发电盈利﹣发电机改造升级费用,分别表示出ω1,ω4,再根据条件建立不等式求出
其解即可.
试题解析:解:(1)由题意,得
第4个月的发电量为:300×4+300(1+40%)=1540千瓦,
今年下半年的总发电量为:
300×5+1540+300×3+300×4×(1+40%)+300×4+300×3×(1+40%)+300×1+300×4×(1+40%)+300×5×(1+40%)
=1500+1540+1440+1480+340+1800=1.
答:该厂第4个月的发电量为1540千瓦;今年下半年的总发电量为1千瓦.
(4)设y与x之间的关系式为y=kx+b,由题意,得
,解得:.
∴y关于x的函数关系式为y=40x+1440(1≤x≤4).
(3)设到第n个月时ω1>ω4,
当n=4时,ω1=1×0.04﹣40×4=474,ω4=300×4×4×0.04=434,ω1>ω4不符合.
∴n>4.
∴ω1=[1+340×4(n﹣4)]×0.04﹣40×4=84.4n﹣440,ω4=300×4n×0.04=74n.
当ω1>ω4时,84.4n﹣440>74n,解之得n>14.7,∴n=3.
答:至少要到第3个月ω1超过ω4.
考点:1.一次函数和不等式的应用;4.由实际问题列函数关系式.
25、见解析
【解析】
先根据已知条件推出AD∥EF,再由平行线的性质得出∠1=∠2,∠3=∠G,结合已知通过等量代换即可得到∠2=∠3,根据角平分线的定义可知AD是∠BAC的平分线.
【详解】
∵EG∥AD,
∴∠1=∠2,∠3=∠G,
∵∠G=∠1,
∴∠2=∠3.
∴AD平分∠BAC.
此题考查平行线的性质,解题关键在于掌握其性质定义.
26、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
【解析】
(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
【详解】
(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.
本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
题号
一
二
三
四
五
总分
得分
年龄/岁
19
20
21
22
24
26
人数
1
1
x
y
2
1
得分(分)
人数(人)
班级
50
60
70
80
90
100
一班
2
5
10
13
14
6
二班
4
4
16
2
12
12
相关试卷
这是一份福建省泉州台商投资区五校联考2024年数学九上开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省泉州台商投资区2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省泉州市晋江市2024年数学九上开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。