福建省泉州台商投资区2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】
展开
这是一份福建省泉州台商投资区2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在、、、、3中,最简二次根式的个数有( )
A.4B.3C.2D.1
2、(4分)下列二次根式中,最简二次根式为
A.B.C.D.
3、(4分)如图,在中,,分别以、为圆心,以大于的长为半径画弧,两弧相交于、两点,直线交于点,若的周长是12,则的长为( )
A.6B.7C.8D.11
4、(4分)函数的图象向上平移2个单位长度后得到的图象的解析式为( )
A.B.C.D.
5、(4分)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )
A.x2+9x-8=0B.x2-9x-8=0
C.x2-9x+8=0D.2x2-9x+8=0
6、(4分)已知二次函数(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为( )
A.或1B.或1C.或D.或
7、(4分)如图,菱形ABCD的一边AB的中点E到对角线交点O的距离为4cm,则此菱形的周长为( )
A.8 cmB.16 cmC. cmD.32 cm
8、(4分)已知一个多边形的内角和等于900º,则这个多边形是( )
A.五边形B.六边形C.七边形D.八边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知x、y为直角三角形两边的长,满足,则第三边的长为________.
10、(4分)计算:____ .
11、(4分)如图,已知的顶点,,点在轴正半轴上,按以下步骤作图:①以点为圆心,适当长度为半径作弧,分别交边,于点,;②分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点;③作射线,交边于点,则点的坐为__________.
12、(4分)已知,化简二次根式的正确结果是_______________.
13、(4分)在等腰三角形ABC中,AB=AC,∠B=30°,BC=cm,P是BC上任意一点,过P作PD//AB,PE//AC,则PE+PD的值为__________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形ABCD的边长为4,动点E从点A出发,以每秒2个单位的速度沿A→D→A运动,动点G从点A出发,以每秒1个单位的速度沿A→B运动,当有一个点到达终点时,另一点随之也停止运动.过点G作FG⊥AB交AC于点F.设运动时间为t(单位:秒).以FG为一直角边向右作等腰直角三角形FGH,△FGH与正方形ABCD重叠部分的面积为S.
(1)当t=1.5时,S=________;当t=3时,S=________.
(2)设DE=y1,AG=y2,在如图所示的网格坐标系中,画出y1与y2关于t的函数图象.并求当t为何值时,四边形DEGF是平行四边形?
15、(8分)如图,直线分别与轴、轴交于点、点,与直线交于点.
(1)若,请直接写出的取值范围;
(2)点在直线上,且的面积为3,求点的坐标?
16、(8分)如图,直线分别与轴、轴交于点,;直线分别与轴交于点,与直线交于点,已知关于的不等式的解集是.
(1)分别求出,,的值;
(2)求.
17、(10分)正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.
(1)已知点F在线段BC上.
①若AB=BE,求∠DAE度数;
②求证:CE=EF;
(2)已知正方形边长为2,且BC=2BF,请直接写出线段DE的长.
18、(10分) (1)计算:
(2)已知,求代数式的值。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一盒中只有黑、白两色的棋子(这些棋除颜色外无其他差别),设黑棋有x枚,白棋有y枚.如果从盒中随机取出一枚为黑棋的概率是,那么y=___.(请用含x的式子表示y)
20、(4分)如图,A、B两点分别位于一个池塘的两端,小聪想用绳子测量A、B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A、B的点C,找到AC、BC的中点D、E,并且测出DE的长为13m,则A、B间的距离为______m.
21、(4分)若式子+有意义,则x的取值范围是____.
22、(4分)当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是_____.
23、(4分)如果+=2012, -=1,那么=_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为引导学生广泛阅读古今文学名著,某校开展了读书活动.学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:
学生平均每周阅读时间频数分布表
请根据以上信息,解答下列问题;
(1)在频数分布表中,a=______,b=______;
(2)补全频数分布直方图;
(3)如果该校有1600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有多少人?
25、(10分)为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.
若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?
若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?
在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
26、(12分)计算:(1)3×(1+)-;(2)-2×|-1|-
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
最简二次根式就是被开方数不含分母,并且不含有开方开的尽的因数或因式的二次根式,根据以上条件即可判断.
【详解】
、、不是最简二次根式.
、3是最简二次根式.
综上可得最简二次根式的个数有2个.
故选C.
本题考查最简二次根式的定义,一定要掌握最简二次根式必须满足两个条件,被开方数不含分母且被开方数不含能开得尽方的因数或因式.
2、C
【解析】
化简得出结果,根据最简二次根式的概念即可做出判断.
【详解】
解:、,故不是最简二次根式;
、,故不是最简二次根式;
、是最简二次根式;
、,故不是最简二次根式。
故选:.
此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.
3、B
【解析】
利用垂直平分线的作法得MN垂直平分AC,则,利用等线段代换得到△CDE的周长,即可解答.
【详解】
由作图方法可知,直线是的垂直平分线,
所以,
的周长,
所以,,所以,选项B正确.
此题考查平行四边形的性质,作图—基本作图,解题关键在于得到△CDE的周长.
4、A
【解析】
根据平移的性质,即可得解.
【详解】
根据题意,得
平移后的图像解析式为,
故答案为A.
此题主要考查平移的性质,熟练掌握,即可解题.
5、C
【解析】
解:设人行道的宽度为x米,根据题意得,
(18﹣3x)(6﹣2x)=61,
化简整理得,x2﹣9x+8=1.
故选C.
6、A
【解析】
首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.
【详解】
依题意知a>0,>0,a+b﹣2=0,
故b>0,且b=2﹣a,
a﹣b=a﹣(2﹣a)=2a﹣2,
于是0<a<2,
∴﹣2<2a﹣2<2,
又a﹣b为整数,
∴2a﹣2=﹣1,0,1,
故a=,1,,
b=,1,,
∴ab=或1,故选A.
根据开口和对称轴可以得到b的范围.按照左同右异规则.当对称轴在y轴的左侧,则a,b符号相同,在右侧则a,b符号相反.
7、D
【解析】
根据菱形的性质可知AO=OC,继而根据中位线定理求得BC长,再根据菱形的四条边相等即可求得答案.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AO=OC,
∵AE=BE,
∴BC=2EO=2×4cm=8cm,
即AB=BC=CD=AD=8cm,
即菱形ABCD的周长为32cm,
故选D.
本题考查了菱形的性质,三角形中位线定理,熟练掌握相关性质与定理是解题的关键.
8、C
【解析】
试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.
考点:多边形的内角和定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、、或.
【解析】
试题分析:∵|x2-4|≥0,,
∴x2-4=0,y2-5y+6=0,
∴x=2或-2(舍去),y=2或3,
①当两直角边是2时,三角形是直角三角形,则斜边的长为:;
②当2,3均为直角边时,斜边为;
③当2为一直角边,3为斜边时,则第三边是直角,长是.
考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理.
10、1
【解析】
先算括号内,再算除法即可.
【详解】
原式=.
故答案为:1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
11、
【解析】
根据勾股定理可得Rt△AOH中,AO=,根据∠AGO=∠AOG,即可得到AG=AO=,进而得到HG=-1,故可求解.
【详解】
如图,∵的顶点,,
∴AH=1,HO=2,
∴Rt△AOH中,AO=,
由题可知,OF平方∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=-1,
∴G
故填:.
此题主要考查坐标与图形,解题的关键是熟知等腰三角形和勾股定理的性质运用.
12、
【解析】
由题意:-a3b≥0,即ab≤0,
∵a<b,
∴a≤0<b;
所以原式=|a|=-a.
13、6
【解析】
分析:先证明BE=PE,AE=PD,把求PE+PD的长转化为求AB的长,然后作AF⊥BC于点F,在Rt△ABF中求AB的长即可.
详解:∵AB=AC,∠B=30°,
∴∠B=∠C=30°,
∵PE//AC,
∴∠BPE=∠C=30°,
∴∠BPE=∠B=30°,
∴BE=PE.
∵PD//AB,PE//AC,
∴四边形AEPD是平行四边形,
∴AE=PD,
∴PE+PD=BE+AE=AB.
作AF⊥BC于点F.
∴,.
∵AB2=AF2+BF2,
∴,
∴AB=6,
故答案为:6.
点睛:本题考查了平行线的性质,等腰三角形的判定与性质,平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,根据题意把求PE+PD的长转化为求AB的长是是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);;(2)当t=或t=4时,四边形DEGF是平行四边形.
【解析】
(1)当t=1.5时,如图①,重叠部分的面积是△FGH的面积,求出即可;当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,求出即可;
(2)进行分类讨论,列出方程即可求出t的值.
【详解】
解:当t=1.5时,如图①,重叠部分的面积是△FGH的面积,所以S=;
当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,所以S=×3×3-×2×2=.
(2)由题意可以求得
y1= ;y2=t(0≤t≤4).
相关试卷
这是一份福建省泉州台商投资区五校联考2024年数学九上开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省泉州台商投资区2025届九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届福建省泉山市台商投资区数学九上开学统考模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。