安徽省宣城市宣州区裘公学校2024年九上数学开学预测试题【含答案】
展开
这是一份安徽省宣城市宣州区裘公学校2024年九上数学开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为( )
A.4B.4.8C.5.2D.6
2、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为
A.9B.6C.4D.3
3、(4分)下列说法中正确的是( )
A.在△ABC中,AB2+BC2=AC2
B.在Rt△ABC中,AB2+BC2=AC2
C.在Rt△ABC中,∠C=90°,AB2+BC2=AC2
D.AB、BC、AC是△ABC的三边,若AB2+BC2=AC2,则△ABC是直角三角形
4、(4分)若m<n,则下列结论正确的是( )
A.2m>2nB.m﹣4<n﹣4C.3+m>3+nD.﹣m<﹣n
5、(4分)下列变形是因式分解的是( )
A.x(x+1)=x2+xB.m2n+2n=n(m+2)
C.x2+x+1=x(x+1)+1D.x2+2x﹣3=(x﹣1)(x+3)
6、(4分)下列事件中,属于随机事件的是( ).
A.凸多边形的内角和为
B.凸多边形的外角和为
C.四边形绕它的对角线交点旋转能与它本身重合
D.任何一个三角形的中位线都平行于这个三角形的第三边
7、(4分)下列任务中,适宜采用普查方式的是( )
A.调查某地的空气质量B.了解中学生每天的睡眠时间
C.调查某电视剧在本地区的收视率D.了解某一天本校因病缺课的学生数
8、(4分)已知,多项式可因式分解为,则的值为( )
A.-1B.1C.-7D.7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若点和点都在一次函数的图象上,则___选择“>”、“3时,小明应选择哪家快递公司更省钱?请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题解析:如图,连接PA.
∵在△ABC中,AB=6,AC=8,BC=10,
∴BC2=AB2+AC2,
∴∠A=90°.
又∵PE⊥AB于点E,PF⊥AC于点F.
∴∠AEP=∠AFP=90°,
∴四边形PEAF是矩形.
∴AP=EF.
∴当PA最小时,EF也最小,
即当AP⊥CB时,PA最小,
∵AB۰AC=BC۰AP,即AP==4.8,
∴线段EF长的最小值为4.8;
故选B.
考点:1.勾股定理、矩形的判定与性质、垂线段最短.
2、D
【解析】
已知ab=8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.
【详解】
故选D.
本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.
3、D
【解析】
根据勾股定理即可解答
【详解】
A、在△ABC中,不一定能够得到AB2+BC2=AC2,故选项错误;
B、在Rt△ABC中,∠B=90°,AB2+BC2=AC2,故选项错误;
C、在Rt△ABC中,∠B=90°,AB2+BC2=AC2,故选项错误;
D、AB、BC、AC是△ABC的三边,若AB2+BC2=AC2,则△ABC是直角三角形,故选项正确.
故选:D.
此题考查勾股定理,解题关键在于掌握勾股定理的内容
4、B
【解析】
根据不等式的性质逐个判断即可.
【详解】
解:A、∵m<n,
∴2m<2n,故本选项不符合题意;
B、∵m<n,
∴m﹣4<n﹣4,故本选项符合题意;
C、∵m<n,
∴3+m<3+n,故本选项不符合题意;
D、∵m<n,
∴﹣m>﹣n,故本选项不符合题意;
故选:B.
此题主要考查不等式的性质,解题的关键是熟知不等式的性质辨别方法.
5、D
【解析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.
【详解】
A、是整式的乘法,故A错误;
B、等式不成立,故B错误;
C、没把一个多项式转化成几个整式乘积的形式,故C错误;
D、把一个多项式转化成几个整式乘积的形式,故D正确;
故选:D.
此题考查因式分解的意义,解题关键在于掌握其定义
6、C
【解析】
随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.
【详解】
解:、凸n多边形的内角和,故不可能为,所以凸多边形的内角和为是不可能事件;
、所有凸多边形外角和为,故凸多边形的外角和为是必然事件;
、四边形中,平行四边形绕它的对角线交点旋转能与它本身重合,故四边形绕它的对角线交点旋转能与它本身重合是随机事件;
、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.
故选:.
本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、D
【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
A. 调查某地的空气质量,由于范围广,应当使用抽样调查,故本选项错误;
B. 了解中学生每天的睡眠时间,由于人数多,不易全面掌握所有的人,故应当采用抽样调查;
C. 调查某电视剧在本地区的收视率,人数较多,不便测量,应当采用抽样调查,故本选项错误;
D. 了解某一天本校因病缺课的学生数,人数少,耗时短,应当采用全面调查的方式,故本选项正确。
故选D.
此题考查全面调查与抽样调查,解题关键在于掌握调查方法.
8、B
【解析】
根据因式分解与整式的乘法互为逆运算,把利用乘法公式展开,即可求出m的值.
【详解】
=
又多项式可因式分解为
∴m=1
故选B
此题考查了因式分解的意义,用到的知识点是因式分解与整式的乘法互为逆运算,是一道基础题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、>
【解析】
分别把点和点代入一次函数求出y1、y2的值,再比较出其大小即可.
【详解】
解: 和点都在一次函数的图象上,
y1=-1+2=1;
y2=-2+2=0
1>0
y1>y2.
故答案为:>
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
10、
【解析】
根据题意在:上取一点,求出点P到直线:的距离d即可.
【详解】
在:上取一点,
点P到直线:的距离d即为两直线之间的距离:
,
故答案为.
本题考查了两直线平行或相交问题,一次函数的性质,点到直线距离,平行线之间的距离等知识,解题的关键是学会利用公式解决问题,学会用转化的思想思考问题.
11、.
【解析】
根据一元一次函数和一元一次不等式的关系,从图上直接可以找到答案.
【详解】
解:由,即函数的图像位于的图像的上方,所对应的自变量x的取值范围,即不等式的解集,解集为.
本题考查了一次函数与不等式的关系,因此数形结合成为本题解答的关键.
12、1.
【解析】
先在Rt△ABC中利用勾股定理可得AC=2,根据平行四边形面积:底高,可求面积。
【详解】
在Rt△ABC中,AB=10,BC=6,
利用勾股定理可得AC=2.
根据平行四边形面积公式可得平行四边形ABCD面积=BC×AC=6×2=1.
故答案为1.
本题考查了平行四边形的性质及勾股定理,熟知平行四边形的面积公式是解题的关键。
13、
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.
【详解】
解:用反证法证明“若,则”时,应假设.
故答案为:.
此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
根据勾股定理的逆定理求出∠BDC=90°,求出线段AC长,根据直角三角形斜边上中线性质求出即可.
【详解】
∵BD2+CD2=22+62=(2)2=BC2,
∴△BDC为直角三角形,∠BDC=90°,
在Rt△ADC中,∵CD=6,AD=2,
∴AC2=(2)2+62=60,
∴AC=2,
∵E点为AC的中点,
∴DE=AC=.
本题考查了勾股定理、勾股定理的逆定理、直角三角形斜边上中线性质等知识点,能求出△ADC是直角三角形是解此题的关键.
15、(1)(0,1);(2)①k=;②N(-3,);③直线 l2的解析式为y=x+1.
【解析】
(1)令,求出相应的y值,即可得到A的坐标;
(2)①先设出P的坐标,然后通过点的平移规律得出平移后 的坐标,然后将代入 中即可求出k的值;
②作AB的中垂线与y轴交于M点,连结BM,分别作AM,BM的平行线,相交于点N,则四边形AMBN是菱形, 设M(0,t),然后利用勾股定理求出t的值,从而求出OM的长度,然后利用BN=AM求出BN的长度,即可得到N的坐标;
③先根据题意画出图形,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D,利用等腰三角形的性质和AAS证明△AOB≌△BDC,得出AO=BD,OB=DC,进一步求出点C的坐标,然后利用待定系数法即可求出直线l2的解析式.
【详解】
(1)∵y=kx+1与y轴交于点A,
令, ,
∴A(0,1).
(2)①由题意得:P(m,km+1),
∵将点P向左平移3个单位,再向下平移1个单位,得点P′,
∴P′(m-3,km),
∵P′(m-3,km)在射线AB上,
∴k(m-3)+1=km,
解得:k=.
②如图,作AB的中垂线与y轴交于M点,连结BM,过点B作AM的平行线,过点A作BM的平行线,两平行线相交于点N,则四边形AMBN是菱形.
,
,
当 时,,解得 ,
∴ .
设M(0,t),则AM=BM=1-t,
在Rt△BOM中,OB2+OM2=BM2,
即32+t2=(1-t)2,
解得:t=,
∴M(0,),
∴OM=,BN=AM=1-=,
∴N(-3,).
③如图,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D.则∠ABC=∠BDC=90°,
∵∠BAC=15°,
∴△ABC是等腰直角三角形,
∴AB=BC,∠ABO+∠CBD=90°,
又∵∠ABO+∠BAO=90°,
∴∠BAO=∠CBD,
在和中,
∴△AOB≌△BDC(AAS),
∴AO=BD=1,OB=DC=3,
∴OD=OB+BD=3+1=7,
∴C(-7,3),
设直线 l2的解析式为:y=ax+1,
则-7a+1=3,
解得:a=.
∴直线 l2的解析式为:y=x+1.
本题主要考查全等三角形的判定及性质,菱形的性质,勾股定理,一次函数与几何综合,解题的关键在于合理的添加辅助线,构造出全等三角形.
16、(1)- (2)
【解析】
【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;
(2)根据二次根式乘除法的法则进行计算即可.
【详解】(1)原式=-=- ;
(2)原式== =.
【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.
17、(1)1;(2),;(3)<x<.
【解析】
试题分析:(1)根据单价=总价÷数量,即可解决问题.
(2)y1函数表达式=50+单价×数量,y2与x的函数表达式结合图象利用待定系数法即可解决.
(3)画出函数图象后y1在y2下面即可解决问题.
试题解析:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克10÷10=1元.
故答案为1.
(2)由题意,;
(3)函数y1的图象如图所示,由解得:,所以点F坐标(,125),由,解得:,所以点E坐标(,650).
由图象可知甲采摘园所需总费用较少时<x<.
考点:分段函数;函数最值问题.
18、 (1) ,;(2) 选拔乙参加比赛.理由见解析.
【解析】
(1)先求出平均数,再根据方差的定义求解;
(2)比较甲、乙两人的成绩的方差作出判断.
【详解】
解:(1),
,
,
;
(2)因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,所以乙同学的成绩较稳定,应选乙参加比赛.
本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据题意和函数图象中的数据可以求得当小天追上小亮时离学校还有多少千米,本题得以解决.
【详解】
解:设小天从到小亮家到追上小亮用的时间为a分钟,由题意可得,
400+60a=100a,
解得,a=10,
即小天从到小亮家到追上小亮用的时间为10分钟,
∵小天7:00从家出发,到学校7:30,
∴小天从家到学校用的时间为:30分钟,
∴当小天追上小亮时离学校还有:60×30﹣600﹣100×10=1(米),
故答案为1.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
20、
【解析】
以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,由圆周角定理的推论得,进而CE=AD=1,由直径所对的圆周角是直角,有勾股定理即可求得AC的长.
【详解】
如图,以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,
∵AB=BC=BD=2,
∴C,D在⊙B 上,
∵AB∥CD,
∴,
∴CE=AD,
∵AD=1,
∴CE=AD=1,AE=AB+BE=2AB=4,
∵AE是⊙B的直径,
∴∠ACE=90º,
∴AC==,
故答案为.
本题借助于圆的模型把三角形的问题转化为圆的性质的问题,再解题过程中需让学生体会这种转化的方法.
21、.
【解析】
如图,作AH⊥BC于H.根据平行四边形ABCD的面积=BC•AH,即可解决问题.
【详解】
如图,作AH⊥BC于H.
在Rt△ABH中,∵AB=4,∠B=60°,∠AHB=90°,∴AH=AB•sin60°=2,∴平行四边形ABCD的面积=BC•AH=16.
故答案为:16.
本题考查了平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
22、y=1x+1
【解析】
根据平移前后两直线解析式中k值相等,b的值上加下减即可得出结论.
【详解】
解:原直线的k=1,b=-3;向上平移5个单位长度,得到了新直线,
那么新直线的k=1,b=-3+5=1.
∴新直线的解析式为y=1x+1.
故答案是:y=1x+1.
此题考查的是求直线平移后的解析式,掌握直线的平移规律是解决此题的关键.
23、6
【解析】
∵OA=3OD,OB=3OC,
∴,
∵AD与BC相交于点O,
∴∠AOB=∠DOC,
∴△AOB∽△DOC,
∴,
∵CD=2,
∴.
故本题应填写:6.
二、解答题(本大题共3个小题,共30分)
24、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.
【解析】
【分析】(1)由图可知,当x≥30时,图象是一次函数图象,设函数关系式为y=kx+b,使用待定系数法求解即可;
(2)根据题意,从图象上看,30小时以内的上网费用都是60元;
(3)根据题意,因为60<75<90,当y=75时,代入(1)中的函数关系计算出x的值即可.
【详解】(1)当x≥30时,设函数关系式为y=kx+b,
则,
解得,
所以y=3x﹣30;
(2)若小李4月份上网20小时,由图象可知,他应付60元的上网费;
(3)把y=75代入,y=3x-30,解得x=35,
∴若小李5月份上网费用为75元,则他在该月份的上网时间是35小时.
【点睛】本题考查了一次函数的应用,待定系数法求一次函数关系式,准确识图、熟练应用待定系数法是解题的关键.
25、(1)4000,100;(2),自变量的范围为;(3)两人相遇时间第8分钟.
【解析】
(1)认真分析图象得到路程与速度数据;
(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
(3)两人相遇实际上是函数图象求交点.
【详解】
(1)由图象可得:家与图书馆之间的路程为4000 米,
小芳步行的速度为
(2)∵小东骑自行车以的速度直接回家
∴他离家的路程
自变量的范围为
(3)由图像可知,两人相遇是在小玲改变速度之前
解得
两人相遇时间第8分钟.
本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.
26、(1)11,19,52,1;(2);y2=16x+3;(3)当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
【解析】
(1)根据甲、乙公司的收费方式,求出y值即可;
(2)根据甲、乙公司的收费方式结合数量关系,找出y1、y2(元)与x(千克)之间的函数关系式;
(3)x>3,分别求出y1>y2、y1=y2、y1<y2时x的取值范围,综上即可得出结论.
【详解】
解:(1)当x=0.5时,y甲=22×0.5=11;
当x=1时,y乙=16×1+3=19;
当x=3时,y甲=22+15×2=52;
当x=3时,y甲=22+15×3=1.
故答案为:11;19;52;1.
(2)当0<x≤1时,y1=22x;
当x>1时,y1=22+15(x-1)=15x+2.
∴
y2=16x+3(x>0);
(3)当x>3时,
当y1>y2时,有15x+2>16x+3,
解得:x<3;
当y2=y2时,有15x+2=16x+3,
解得:x=3;
当y1<y2时,有15x+2<16x+3,
解得:x>3.
∴当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
本题考查了一次函数的应用,解题的关键是:(1)根据甲、乙公司的收费方式求出y值;(2)根据甲、乙公司的收费方式结合数量关系,找出、(元)与x(千克)之间的函数关系式;(3)分情况考虑>、=、<时x的取值范围.
题号
一
二
三
四
五
总分
得分
快递物品重量(千克)
0.5
1
3
4
…
甲公司收费(元)
22
…
乙公司收费(元)
11
51
67
…
相关试卷
这是一份2024年安徽省宣城市宣州区雁翅学校数学九上开学复习检测模拟试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省宣城市宣州区水阳中学数学九上开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省宣城市宣州区狸桥中学九上数学开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。