还剩16页未读,
继续阅读
安徽省淮南市名校2025届数学九年级第一学期开学调研模拟试题【含答案】
展开这是一份安徽省淮南市名校2025届数学九年级第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某小组7名同学积极捐出自己的零花钱支援地震灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,1.这组数据的众数和中位数分别是( ).
A.50,20B.50,30C.50,50D.1,50
2、(4分)已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为( )
A.B.C.D.12
3、(4分)将直线y=-2x向上平移5个单位,得到的直线的解析式为( )
A.y=-2x-5 B.y=-2x+5 C.y=-2(x-5) D.y=-2(x+5)
4、(4分)不等式组的解集在数轴上表示正确的是( )
A.B.
C.D.
5、(4分)在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )
A.a2=b2﹣c2B.c2=2a2C.a=bD.∠C=90°
6、(4分)已知一次函数y=kx+b,-3
7、(4分)下列各式正确的个数是( )①;②;③;④
A.0B.1C.2D.3
8、(4分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )
A.B.C.5D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图放置的两个正方形的边长分别为和,点为中点,则的长为__________.
10、(4分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
11、(4分)化简:= .
12、(4分)如图,直线y=kx+3经过点A(1,2),则它与x轴的交点B的坐标为____.
13、(4分)若分式方程有增根,则 a 的值是__________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)用适当的方法解一元二次方程:x2+4x+3=1.
15、(8分)如图,在中, 是的中点,连接并延长交的延长线于点.
(1)求证:;
(2)若,,求的度数.
16、(8分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中、、.
(1)将沿轴方向向左平移6个单位,画出平移后得到的;
(2)将绕着点顺时针旋转90°,画出旋转后得到的,、、的对应点分别是、、;
17、(10分)某公司招聘职员,对甲、乙两位候选人进行了面试,面试中包括形体、口才、专业知识,他们的成绩(百分制)如下表:
(1)如果公司根据经营性质和岗位要求,以面试成绩中形体、口才、专业知识按照的比值确定成绩,请计算甲、乙两人各自的平均成绩,看看谁将被录取?
(2)如果公司根据经营性质和岗位要求,以面试成绩中形体占,口才占,专业知识占确定成绩,那么你认为该公司应该录取谁?
18、(10分)解不等式组: ,并把解集在数轴上表示出来.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为___
20、(4分)如图,是同一双曲线上的三点过这三点分别作轴的垂线,垂足分别为,连结得到的面积分别为.那么的大小关系为____.
21、(4分)因式分解:3x3﹣12x=_____.
22、(4分)若实数a、b满足a2—7a+2=0和b2—7b+2=0,则式子的值是____.
23、(4分)如果多边形的每个外角都是45°,那么这个多边形的边数是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组,并把不等式组的解集在数轴上表出来
25、(10分)已知关于x的方程有两个不相等的实数根.
(1)求k的取值范围;
(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.
26、(12分)将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.
(1)求点G的坐标;
(2)求直线EF的解析式;
(3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据众数和中位数的定义进行计算即可.
【详解】
众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;
将这组数据从小到大的顺序排列为:20,25,30,2,2,2,1,处于中间位置的那个数是2,由中位数的定义可知,这组数据的中位数是2.
故选:C.
本题考查众数和中位数,明确众数和中位数的概念是关键.
2、B
【解析】
根据正方形的边长以及七巧板的特点先求出七巧板各个图形的边长,继而即可求得六边形的周长.
【详解】
解:如图,七巧板各图形的边长如图所示,
则六边形EFGHMN的周长为:
2+2++2+2+2++2=10+4,
故选B.
本题考查了正方形的面积、七巧板、周长的定义等,七巧板由下面七块板组成(完整图案为一正方形):五块等腰直角三角形(两块小型小三角形,一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,熟知七巧板中各块中的边长之间的关系是解题的关键.
3、B
【解析】
直接根据一次函数图象与几何变换的有关结论求解.
【详解】
y=-2x向上平移5个单位,上加下减,可得到y=-2x+5
故答案为:B
考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.
4、B
【解析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.
【详解】
∵解不等式得:x<0,解不等式得:x≤3,
∴不等式组的解集为x<0,
在数轴上表示为:,
故选B.
本题考查了解一元一次不等式组,在数轴上表示不等式的解集,解题的关键是先解不等式再画数轴.
5、A
【解析】
根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.
【详解】
解:设∠A、∠B、∠C分别为x、x、2x,
则x+x+2x=180°,
解得,x=45°,
∴∠A、∠B、∠C分别为45°、45°、90°,
∴a2+b2=c2,A错误,符合题意,
c2=2a2,B正确,不符合题意;
a=b,C正确,不符合题意;
∠C=90°,D正确,不符合题意;
故选:A.
本题考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.
6、D
【解析】
本题分情况讨论①x=-3时对应y=-1,x=1时对应y=3;②x=-3时对应y=3,x=1时对应y=-1;将每种情况的两组数代入即可得出答案.
【详解】
①将x=-3,y=-1代入得:-1=-3k+b,将x=1,y=3代入得:3=k+b,
解得:k=1,b=2;函数解析式为y=x+2,经检验验符合题意;
②将x=-3,y=3,代入得:3=-3k+b,将x=1,y=-1代入得:-1=k+b,
解得:k=-1,b=1,函数解析式为y=-x,经检验符合题意;
综上可得b=2或1.
故选D.
本题考查待定系数法求函数解析式,注意本题需分两种情况,不要漏解.
7、B
【解析】
根据根式运算法则逐个进行计算即可.
【详解】
解:①,故错误;
②这个形式不存在,二次根式的被开分数为非负数,故错误;
③;,正确;
④,故错误.
故选B.
本题考查了二次根式的化简,注意二次根式要化最简.
8、A
【解析】
根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.
【详解】
解:∵四边形ABCD是菱形,设AB,CD交于O点,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB==5,
∵S菱形ABCD=×AC×BD=AB×DH,
∴×8×6=5×DH,
∴DH=,
故选A.
本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=×AC×BD=AB×DH是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
连接AC,AF,证明△ACF为直角三角形,再利用直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
如图,连接AC,AF,则AC,AF为两正方形的对角线,
∴∠CAF=∠CAB+∠FAE=45°+45°=90°
∴△ACF为直角三角形,
延长CB交FH于M,
∴CM=4+8=12,FM=8-4=4
在Rt△CMF中,CF=
∵点为中点,
∴AG=CF=
此题主要考查正方形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.
10、1
【解析】
【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,
∴m1﹣1m=0且m≠0,
解得,m=1,
故答案是:1.
【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.
11、.
【解析】
试题分析:原式=.
考点:二次根式的乘除法.
12、(3,0)
【解析】
把点代入直线解析式,求出直线的表达式子,再根据点是直线与轴的交点,把代入直线表达式即可求解.
【详解】
解:把A(1,2)代入可得:
解得:
∴
∴把代入可得:
解得:
∴B(3,0)
故答案为(3,0)
本题主要考查了一次函数与坐标轴交点问题,通过一次函数所经过的点求一次函数的解析式是解题的关键.
13、1
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入整式方程算出a的值即可.
【详解】
方程两边同时乘以x﹣3得:1+x﹣3=a﹣x.
∵方程有增根,∴x﹣3=0,解得:x=3,∴1+3﹣3=a﹣3,解得:a=1.
故答案为:1.
本题考查了分式方程的增根,先根据增根的定义得出x的值是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、x2=-3,x2=-2
【解析】
利用因式分解法解方程.
【详解】
解:(x+3)(x+2)=2,
x+3=2或x+2=2,
所以x2=-3,x2=-2.
本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
15、(1)详见解析;(2)35°.
【解析】
(1)欲证明AE=FE,只要证明△ADE≌△FCE(AAS)即可.
(2)根据∠DAE=∠BAD-∠FAB,只要求出∠BAD,∠FAB即可.
【详解】
解:(1)证明:∵四边形是平行四边形,是的中点,
∴,,
∴,, ,
∴≌(),
∴.
(2)∵四边形是平行四边形,
∴,由(1)的结论知,
∴,
∵,
∴,
∴
∴,
∴∠BAD=180°−∠B=70°,
∴∠DAE=∠BAD−∠FAB=70°−35°=35°.
此题考查平行四边形的性质,全等三角形的判定与性质,解题关键在于证明△ADE≌△FCE.
16、(1)的如图所示. 见解析;(2)的如图所示. 见解析.
【解析】
(1)分别画出A、B、C的对应点A1、B1、C1即可;
(2)分别画出A、B、C的对应点A2、B2、C2即可.
【详解】
(1)如图所示,即为所求;
(2)如图所示,即为所示.
考查作图-平移变换,作图-旋转变换等知识,解题的关键是熟练掌握基本知识.
17、(1)甲将被录取;(2)公司录取乙.
【解析】
(1)由形体、口才、专业知识按照的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,
(2)由面试成绩中形体占,口才占,笔试成绩中专业知识占, ,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.
【详解】
解:(1)甲的平均成绩:,
乙的平均成绩:,
,
所以,甲将被录取;
(2)甲的平均成绩:,
乙的平均成绩:,
,
所以,公司录取乙.
本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.
18、﹣1≤x<1
【解析】
试题分析:先求出每个不等式的解集,再求出其公共部分即可.
试题解析:
由①得1x﹣7<3﹣3x,
化简得5x<10,
解得:x<1.
由②得4x+9≥3﹣1x,
化简得6x≥﹣6,
解得:x≥﹣1,
∴原不等式组的解集为﹣1≤x<1.
在数轴上表示出来为:
点睛:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度,
【详解】
∵ DE是线段AB的垂直平分线,
∴AE=BE=BC+CE=3+x,
∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,
解得x=.
20、S1=S2=S1
【解析】
根据反比例函数k的几何意义进行判断.
【详解】
解:设P1、P2、P1三点都在反比例函数y=上,
则S1=|k|,S2=|k|,S1=|k|,
所以S1=S2=S1.
故答案为S1=S2=S1.
本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
21、3x(x+2)(x﹣2)
【解析】
先提公因式3x,然后利用平方差公式进行分解即可.
【详解】
3x3﹣12x
=3x(x2﹣4)
=3x(x+2)(x﹣2),
故答案为3x(x+2)(x﹣2).
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
22、.
【解析】
由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,可把a,b看成是方程x2-7x+2=0的两个根,再利用根与系数的关系求解即可.
【详解】
解:由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,
∴可把a,b看成是方程x2-7x+2=0的两个根,
∴a+b=7,ab=2,
∴===.
故答案为:.
本题考查了根与系数的关系,属于基础题,根据题意把a,b看成是方程的两个根后根据根与系数的关系求出a+b,ab是解题的关键.
23、1
【解析】
∵一个多边形的每个外角都等于45°,∴多边形的边数为360°÷45°=1.则这个多边形是八边形.
二、解答题(本大题共3个小题,共30分)
24、-4≤x<3,见解析
【解析】
解一元一次不等式组求解集,并把不等式的解集在数轴上表示出来即可.
【详解】
解:解不等式①,得
解不等式②,得
原不等式组的解集为:
在数轴上表示为:
本题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,能够正确表示不等式组的解集是解题的关键.
25、(1),且;(2)不存在,理由见解析.
【解析】
(1)根据方程有两个不相等的实数根可知△=,求得k的取值范围;
(2)可假设存在实数k,使得方程的两个实数根,的倒数和为0,列出方程即可求得k的值,然后把求得的k值代入原式中看看与已知是否矛盾,如果矛盾则不存在,如果不矛盾则存在.
【详解】
解:(1)∵方程有两个不相等的实数根,
∴△=,且,解得,且,即k的取值范围是,且;
(2)假设存在实数k,使得方程的两个实数根,的倒数和为0,则,不为0,且,即,且,解得,而与方程有两个不相等实根的条件,且矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.
本题考查根与系数的关系;一元二次方程的定义;根的判别式.
26、(1)G点的坐标为:(3,4-);(2)EF的解析式为:y=x+4-2;(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)
【解析】
分析:(1)点G的横坐标与点N的横坐标相同,易得EM为BC的一半减去1,为1,EG=CE=2,利用勾股定理可得MG的长度,4减MG的长度即为点G的纵坐标;
(2)由△EMG的各边长可得∠MEG的度数为60°,进而可求得∠CEF的度数,利用相应的三角函数可求得CF长,4减去CF长即为点F的纵坐标,设出直线解析式,把E,F坐标代入即可求得相应的解析式;
(3)以点F为圆心,FG为半径画弧,交直线EF于两点;以点G为圆心,FG为半径画弧,交直线EF于一点;做FG的垂直平分线交直线EF于一点,根据线段的长度和与坐标轴的夹角可得相应坐标.
详解:(1)易得EM=1,CE=2,
∵EG=CE=2,
∴MG=,
∴GN=4-;
G点的坐标为:(3,4-);
(2)易得∠MEG的度数为60°,
∵∠CEF=∠FEG,
∴∠CEF=60°,
∴CF=2,
∴OF=4-2,
∴点F(0,4-2).
设EF的解析式为y=kx+4-2,
易得点E的坐标为(2,4),
把点E的坐标代入可得k=,
∴EF的解析式为:y=x+4-2.
(3)P1(1,4-)、P2(,7-2),
P3(-,2-1)、P4(3,4+)
点睛:本题综合考查了折叠问题和相应的三角函数知识,难点是得到关键点的坐标;注意等腰三角形的两边相等有多种不同的情况.
题号
一
二
三
四
五
总分
得分
相关试卷
安徽省淮南市田区2025届九上数学开学调研试题【含答案】:
这是一份安徽省淮南市田区2025届九上数学开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省淮南市大通区(东部地区)数学九年级第一学期开学检测模拟试题【含答案】:
这是一份2025届安徽省淮南市大通区(东部地区)数学九年级第一学期开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省亳州市数学九年级第一学期开学调研模拟试题【含答案】:
这是一份2024年安徽省亳州市数学九年级第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。