2024年安徽省无为市九年级数学第一学期开学调研模拟试题【含答案】
展开
这是一份2024年安徽省无为市九年级数学第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于x的方程x2+6x-a=0无实数根,则a的值可以是下列选项中的( )
A.-10B.-9C.9D.10
2、(4分)以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是( )
A.B.
C.D.
3、(4分)如图①,点从菱形的顶点出发,沿以的速度匀速运动到点.图②是点运动时,的面积()随着时间()变化的关系图象,则菱形的边长为( )
A.B.C.D.
4、(4分)在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,则图形与原图形相比( )
A.向右平移了5个单位长度B.向左平移了5个单位长度
C.向上平移了5个单位长度D.向下平移了5个单位长度
5、(4分)不等式组的解集在数轴上可表示为( )
A.B.C.D.
6、(4分)在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度,所得到的点坐标为( )
A.(1,0)B.(1,2)C.(5,4)D.(5,0)
7、(4分)已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与在同一坐标系中的图象不可能是( )
A.B.
C.D.
8、(4分)如图,在中,=55°,,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交于点,连接,则的度数为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若直线经过点和,且,是整数,则___.
10、(4分)如图,△ABO的面积为3,且AO=AB,反比例函数y= 的图象经过点A,则k的值为___.
11、(4分)在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线y=相交于点A,和双曲线y=交于点B,且AB=6,则点B的坐标是______.
12、(4分)已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为_________,频率为_________.
13、(4分)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P'的坐标是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x的方程 (m-1)x-mx+1=0。
(1)证明:不论m为何值时,方程总有实数根;
(2)若m为整数,当m为何值时,方程有两个不相等的整数根。
15、(8分)解不等式组:,并把解集在数轴上表示出来。
16、(8分)在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:
请你根据以上统计图中的信息,解答下列问题:
(1)该班有学生多少人?
(2)补全条形统计图;
(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?
17、(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于C、D两点, C点的坐标是(4,-1),D点的横坐标为-1.
(1)求反比例函数与一次函数的关系式;
(1)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值?
18、(10分)已知关于x的方程2x2+kx-1=0.
(1)求证:方程有两个不相等的实数根.
(2)若方程的一个根是-1,求方程的另一个根.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是_____.
20、(4分)如图,垂直平分线段于点的平分线交于点,连结,则∠AEC的度数是 .
21、(4分)如图 ,矩形 ABCD 中,对角线 AC,BD 相交于点 O,若再补充一个条件就能使矩形 ABCD 成为正方形,则这个条件是 (只需填一个条件即可).
22、(4分)如图,两个大小完全相同的矩形ABCD和AEFG中AB=4 cm,BC=3 cm,则FC=_____.
23、(4分)有一个一元二次方程,它的一个根 x1=1,另一个根-2<x2<1. 请你写出一个符合这样条件的方程:_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)一块直角三角形木块的面积为1.5m2,直角边AB长1.5m,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图①、图②所示。你能用所学知识说明谁的加工方法更符合要求吗?
25、(10分)如图,在边长为的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:
(1)在这个变化过程中,自变量、因变量各是什么?
(2)请将上述表格补充完整;
(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积是怎样变化的?
(4)设等腰直角三角形的直角边长为,图中阴影部分的面积为,写出与的关系式.
26、(12分)根据下列条件分别确定函数y=kx+b的解析式:
(1)y与x成正比例,当x=5时,y=6;
(2)直线y=kx+b经过点(3,6)与点(2,-4).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
二次方程无实数根,0)的图象上,
∴k=xy=OC⋅AC=1.
故答案为:1.
此题考查反比例函数系数k的几何意义,解题关键在于作辅助线.
11、(3+,)或(-3+,)
【解析】
根据直线l⊥y轴,可知AB∥x轴,则A、B的纵坐标相等,设A(m,m)(m>0),列方程 ,可得点B的坐标,根据AB=6,列关于m的方程可得结论.
【详解】
如图,
设A(m,m)(m>0),如图所示,
∴点B的纵坐标为m,
∵点B在双曲线y=上,
∴,
∴x=,
∵AB=6,
即|m-|=6,
∴m-=6或-m=6,
∴m1=3+或m2=3-<0(舍),m3=-3-(舍),m4=-3+,
∴B(3+,)或(-3+,),
故答案为:(3+,)或(-3+,).
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
12、8 0.4
【解析】
频数是指某个数据出现的次数,频率是频数与总数之比,据频数、频率的定义计算即可.
【详解】
解:在64.5~66.5这一小组中,65出现5次,66出现3次,出现数据的次数为5+3=8次,故其频数为8,,故其频率为0.4.
故答案为: (1). 8 (2). 0.4
本题考查了频数与频率,依据两者的定义即可解题.
13、(1,5)
【解析】
根据向右平移横坐标加,向上平移纵坐标加求解即可.
【详解】
解:∵点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P',
∴点P′的横坐标为-2+3=1,
纵坐标为1+4=5,
∴点P′的坐标是(1,5).
故答案为(1,5).
本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)m=0
【解析】
(1)分该方程为一元二次方程和一元一次方程展开证明即可。
(2)利用因式分解解该一元二次方程,求出方程的根,利用整数概念进行求值即可
【详解】
解:(1)当 时, 是关于x的一元二次方程。
∵不论m为何值时,(m﹣2)2≥0,
∴△≥0,
∴方程总有实数根;
当m=1时,是关于x的一元一次方程。
∴-x+1=0
∴x=1
∴方程有实数根x=1
∴不论m为何值时,方程总有实数根
(2)
分解因式得
解得:
∵方程有两个不相等的整数根
∴为整数,
∴ 且
∴m=0
本题考查了根的判别式,掌握方程与根的关系,及因式分解解一元二次方程,和整数的概念是解题的关键.
15、,解集在数轴上表示见解析
【解析】
试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可.
试题解析:
由①得:
由②得:
∴不等式组的解集为:
解集在数轴上表示为:
16、(1)因为捐2本的人数是15人,占30%,所以该班人数为=50
(2)根据题意知,捐4本的人数为:50-(10+15+7+5)=1.(如图)
(3)七(1)班全体同学所捐献图书的中位数是=3(本),众数是2本.
【解析】
(1)根据捐2本的人数是15人,占30%,即可求得总人数;
(2)首先根据总人数和条形统计图中各部分的人数计算捐4本的人数,进而补全条形统计图;
(3)根据中位数和众数的定义解答
17、(1)y=-0.5x+1,y=;(1)-1
相关试卷
这是一份2024年安徽省宁国市宁阳学校数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省六区联考九年级数学第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省阜阳临泉县联考数学九年级第一学期开学调研试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。