年终活动
搜索
    上传资料 赚现金

    2025届新疆生产建设兵团第二中学九上数学开学教学质量检测试题【含答案】

    2025届新疆生产建设兵团第二中学九上数学开学教学质量检测试题【含答案】第1页
    2025届新疆生产建设兵团第二中学九上数学开学教学质量检测试题【含答案】第2页
    2025届新疆生产建设兵团第二中学九上数学开学教学质量检测试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届新疆生产建设兵团第二中学九上数学开学教学质量检测试题【含答案】

    展开

    这是一份2025届新疆生产建设兵团第二中学九上数学开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列由左到右的变形中,属于因式分解的是( )
    A.B.
    C.D.
    2、(4分)下列命题中,是假命题的是( )
    A.四个角都相等的四边形是矩形
    B.正方形的对角线所在的直线是它的对称轴
    C.对角线互相平分且平分每一组对角的四边形是菱形
    D.一组对边相等,另一组对边平行的四边形是平行四边形
    3、(4分)如图,等边与正方形重叠,其中,两点分别在,上,且,若,,则的面积为( )
    A.1B.
    C.2D.
    4、(4分)用配方法解方程,变形后的结果正确的是( )
    A.B.C.D.
    5、(4分)下面几个函数关系式中,成正比例函数关系的是 ( )
    A.正方体的体积和棱长
    B.正方形的周长和边长
    C.菱形的面积一定,它的两条对角线长
    D.圆的面积与它的半径
    6、(4分)下列代数式中,属于最简二次根式的是( )
    A.B.C.D.
    7、(4分)如图,、两点在反比例函数的图象上,、两点在反比例函数的图象上,轴于点,轴于点,,,,则的值是( )
    A.8B.6C.4D.10
    8、(4分)下列各式成立的是( )
    A.B.C.(﹣)2=﹣5D.=3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,把Rt△ABC(∠ABC=90°)沿着射线BC方向平移得到Rt△DEF,AB=8,BE=5,则四边形ACFD的面积是________.
    10、(4分)如图,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,AD=2,则AC的长为_____.
    11、(4分)菱形的周长为8cm,一条对角线长2cm,则另一条对角线长为 cm.。
    12、(4分)在四边形ABCD中,AB=CD,请添加一个条件_____,使得四边形ABCD是平行四边形.
    13、(4分)如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60°,连结DF,则DF的长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在中,,,点是的中点,,垂足为,连接.
    (1)如图1,与的数量关系是__________.
    (2)如图2,若是线段上一动点(点不与点、重合),连接,将线段绕点逆时针旋转得到线段,连接,请猜想三者之间的数量关系,并证明你的结论;
    15、(8分)已知:如图,在□ABCD中,对角线AC,BD相交于点O,直线EF过点O,交DA于点E,交BC于点F.求证:OE=OF,AE=CF,DE=BF
    16、(8分)我省松原地震后,某校开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,绘制出如下的统计图.
    (1)把统计图补充完整;
    (2)直接写出这组数据的中位数;
    17、(10分)如图,等边△ABC的边长6cm.①求高AD;②求△ABC的面积.
    18、(10分) (1) 解不等式组: .
    (2)解方程:.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=_____.
    20、(4分)如图:已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴,轴分别交于点C、点D,若DB=DC,则直线CD的函数表达式为__________.
    21、(4分)已知则第个等式为____________.
    22、(4分)如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是12cm2,则AC的长是_____cm.
    23、(4分)如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)求不等式组的正整数解.
    25、(10分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.
    26、(12分)如图,平面直角坐标系中的每个小正方形边长为1,△ABC的顶点在网格的格点上.
    (1)画线段AD∥BC,且使AD=BC,连接BD;此时D点的坐标是 .
    (2)直接写出线段AC的长为 ,AD的长为 ,BD的长为 .
    (3)直接写出△ABD为 三角形,四边形ADBC面积是 .
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据因式分解的定义,逐个判断即可.
    【详解】
    解:A、不属于因式分解,故本选项不符合题意;
    B、ax2+axy+ax=ax(x+y+1),因式分解错误,故本选项不符合题意;
    C、m2-2mn+n2=(m-n)2,因式分解错误,故本选项不符合题意;
    D、属于因式分解,故本选项符合题意;
    故选:D.
    本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
    2、D
    【解析】
    根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.
    【详解】
    解:A、四个角都相等的四边形是矩形,是真命题;
    B、正方形的对角线所在的直线是它的对称轴,是真命题;
    C、对角线互相平分且平分每一组对角的四边形是菱形,是真命题;
    D、一组对边相等且平行的四边形是平行四边形,是假命题;
    故选D.
    本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    3、C
    【解析】
    过F作FQ⊥BC于Q,根据等边三角形的性质和判定和正方形的性质求出BE=2,∠BED=60°,∠DEF=90°,EF=2,求出∠FEQ,求出CE和FQ,即可求出答案.
    【详解】
    过F作FQ⊥BC于Q,则∠FQE=90°.
    ∵△ABC是等边三角形,AB=6,∴BC=AB=6,∠B=60°.
    ∵BD=BE,DE=2,∴△BED是等边三角形,且边长为2,∴BE=DE=2,∠BED=60°,∴CE=BC﹣BE=1.
    ∵四边形DEFG是正方形,DE=2,∴EF=DE=2,∠DEF=90°,∴∠FEC=180°﹣60°﹣90°=30°,∴QFEF=1,∴△EFC的面积为CE•FQ1×1=2.
    故选C.
    本题考查了等边三角形的性质和判定、正方形的性质等知识点,能求出CE和FQ的长度是解答此题的关键.
    4、A
    【解析】
    方程移项后,配方得到结果,即可作出判断.
    【详解】
    解:方程移项得:x2-8x=-9,配方得:x2-8x+16=7,即(x-4)2=7,
    故选:A.
    此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.
    5、B
    【解析】
    根据正比例函数的定义进行判断.
    【详解】
    解:A、设正方体的体积为V,棱长为a,则V=a3,不符合正比例函数的定义,故本选项错误;
    B、设正方形的周长为C,边长为a,则C=4a,符合正比例函数的定义,故本选项正确;
    C、设菱形面积为S,两条对角线长分别为m,n,则S=mn,不符合正比例函数的定义,故本选项错误;
    D、设圆的面积为S,半径为r,则S=πr2,不符合正比例函数的定义,故本选项错误;
    故选:B.
    本题主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
    6、A
    【解析】
    最简二次根式满足下列两个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,再对各选项逐一判断即可.
    【详解】
    解:A、是最简二次根式,故A符合题意;
    B、,故不是最简二次根式,故B不符合题意;
    C、,故不是最简二次根式,故C不符合题意;
    D、,故不是最简二次根式,故D不符合题意;
    故答案为:A
    本题考查二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.
    7、A
    【解析】
    由反比例函数的性质可知S△AOE=S△BOF=k1,S△COE=S△DOF=﹣k2,结合S△AOC=S△AOE+S△COE和S△BOD=S△DOF+S△BOF可求得k1﹣k2的值.
    【详解】
    解:连接OA、OC、OD、OB,如图:
    由反比例函数的性质可知S△AOE=S△BOF=|k1|=k1,S△COE=S△DOF=|k2|=﹣k2,
    ∵S△AOC=S△AOE+S△COE,
    ∴AC•OE=×4OE=2OE=(k1﹣k2)…①,
    ∵S△BOD=S△DOF+S△BOF,
    ∴BD•OF=×(EF﹣OE)=×2(6﹣OE)=6﹣OE=(k1﹣k2)…②,
    由①②两式解得OE=2,
    则k1﹣k2=1.
    故选:A.
    本题考查反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.
    8、D
    【解析】
    根据根式的计算法则计算即可.
    【详解】
    解:A、原式= ,不符合题意;
    B、原式为最简结果,不符合题意;
    C、原式=5,不符合题意;
    D、原式=3,符合题意,
    故选:D.
    本题主要考查根式的计算,这是基本知识点,应当熟练掌握.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、40
    【解析】
    根据平移的性质可得CF=BE=5,然后根据平行四边形的面积公式即可解答.
    【详解】
    由平移的性质可得:CF=BE=5,
    ∵AB⊥BF,
    ∴四边形ACFD的面积为:AB·CF=8×5=40,
    故答案为40.
    本题考查了平移的性质和平行四边形面积公式,掌握平移的性质和平行四边形面积公式是解题的关键.
    10、1
    【解析】
    利用直角三角形30度角的性质,可得AC=2AD=1.
    【详解】
    解:在矩形ABCD中,OC=OD,
    ∴∠OCD=∠ODC,
    ∵∠AOD=60°,
    ∴∠OCD=∠AOD=×60°=30°,
    又∵∠ADC=90°,
    ∴AC=2AD=2×2=1.
    故答案为1.
    本题考查了矩形的性质,主要利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键
    11、
    【解析】解:先根据菱形的四条边长度相等求出边长,再由菱形的对角线互相垂直平分根据勾股定理即可求出另一条对角线的长。
    12、AB//CD等
    【解析】
    根据平行四边形的判定方法,结合已知条件即可解答.
    【详解】
    ∵AB=CD,
    ∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)
    或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.
    故答案为AD=BC或者AB∥CD.
    本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.
    13、
    【解析】
    延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,由菱形的性质和勾股定理再结合已知条件可求出NF,DN的长,在直角三角形DNF中,再利用勾股定理即可求出DF的长.
    【详解】
    延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,
    ∵四边形ABCD和四边形BEFG都是菱形,
    ∴GF∥BE,EF∥AM,
    ∴四边形AMFE是平行四边形,
    ∴AM=EF=2,MF=AE=AB+BE=5+2=7,
    ∴DM=AD﹣AM=5﹣2=3,
    ∵∠A=60°,
    ∴∠DAH=30°,
    ∴MN=DM=,
    ∴DN==,NF=MF﹣MN=,
    在Rt△DNF中,DF==,
    故答案为:.
    本题考查了菱形的性质、平行四边形的判定和性质、含30°直角三角形的性质以及勾股定理的运用,正确作出图形的辅助线是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)DE=BC;(2)
    【解析】
    (1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,可得DE=BD=BC;
    (2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”判断△DCP≌△DBF,则CP=BF,利用CP+BP =BC,DE=BC可得到DE =(BF+BP).
    【详解】
    解:(1)∵∠ACB=90°,∠A=30°,
    ∴∠B=60°,
    ∵点D是AB的中点,
    ∴DB=DC,
    ∴△DCB为等边三角形,
    ∵DE⊥BC,
    ∴DE=BC;
    故答案为DE=BD=BC.
    (2)DE =(BF+BP).理由如下:
    ∵线段DP绕点D逆时针旋转60°,得到线段DF,
    ∴∠PDF=60°,DP=DF,
    而∠CDB=60°,
    ∴∠CDB-∠PDB=∠PDF-∠PDB,
    ∴∠CDP=∠BDF,
    在△DCP和△DBF中

    ∴△DCP≌△DBF(SAS),
    ∴CP=BF,
    而CP=BC-BP,
    ∴BF+BP=BC,
    ∵DE=BC,
    ∴DE =(BF+BP);
    故答案为DE =(BF+BP).
    本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.
    15、证明见解析
    【解析】
    根据平行四边形的性质和平行线性质得出OA=OC,∠OAE=∠OCF,证△AOE≌△COF,推出OE=OF,AE=CF,DE=BF.
    【详解】
    证明:∵四边形ABCD是平行四边形,且对角线AC与BD相交于点O,AD∥BC,
    ∴OA=OC,∠EAO=∠FCO.
    又∵∠AOE=∠COF,∴△AOE≌△COF. ∴OE=OF,AE=CF.
    又∵AD=CB,∴DE=AD-AE=CB-CF=BF.
    本题考查平行四边形的性质,全等三角形的判定和性质,解题关键是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.
    16、(1)见解析;(2)20.
    【解析】
    (1)求得捐款金额为30元的学生人数,把统计图补充完整即可.
    (2)根据中位数和众数的定义解答;
    【详解】
    解:(1)捐款金额为30元的学生人数=50-6-15-19-2=8(人),
    把统计图补充完整如图所示;
    (2)数据总数为50,所以中位数是第25、26位数的平均数,即(20+20)÷2=20.
    本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了中位数的认识.
    17、(1)
    (2)
    【解析】
    本题考查了等边三角形的性质和勾股定理.①中,运用等腰三角形的三线合一和勾股定理;②中,根据三角形的面积公式进行计算即可.
    18、 (1) ; (2) .
    【解析】
    (1)先分别求出①②不等式的解集,再确定不等式组的解集.
    (2)先去分母,然后按照整式方程求解,最后检验即可.
    【详解】
    解:(1)由①得:x≤1
    由②得:
    ∴原不等式组的解集是:;
    (2)



    -7x=-7
    x=1
    经检验是原方程的根.
    本题考查了解一元一次不等式组和分式方程.解一元一次不等式组的关键在于分别求出各不等式的解集;解分式方程的方法和整式方程类同,只是最后需要有检验环节,这也是易错点.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    由△ADE≌△DCF可导出四边形CEPF对角互补,而CE=CF,于是将△CEP绕C点逆时针旋转90°至△CFG,可得△CPG是等腰直角三角形,从而PG=PF+FG=PF+PE=CP,求出PE和PF的长度即可求出PC的长度.
    【详解】
    解:如图,作CG⊥CP交DF的延长线于G.
    则∠PCF+∠GCF=∠PCG=90°,
    ∵四边形ABCD是边长为2的正方形,
    ∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,
    ∵E、F分别为CD、BC中点,
    ∴DE=CE=CF=BF=1,
    ∴AE=DF=,
    ∴DP==,
    ∴PE=,PF=,
    在△ADE和△DCF中:
    ∴△ADE≌△DCF(SAS),
    ∴∠AED=∠DFC,
    ∴∠CEP=∠CFG,
    ∵∠ECP+∠PCF=∠DCB=90°,
    ∴∠ECP=∠FCG,
    在△ECP和△FCG中:
    ∴△ECP≌△FCG(ASA),
    ∴CP=CG,EP=FG,
    ∴△PCG为等腰直角三角形,
    ∴PG=PF+FG=PF+PE==CP,
    ∴CP=.
    故答案为:.
    本题考查了正方形的性质,全等三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    20、
    【解析】
    试题分析:设直线AB的解析式为y=kx+b,
    把A(0,1)、点B(1,0)代入,
    得,解得.
    ∴直线AB的解析式为y=﹣1x+1.
    将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,
    ∵y轴⊥BC
    ∴OB=OC,
    ∴BC=1,
    因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣1(x+1)+1,
    即y=-1x-1.
    21、
    【解析】
    根据21-20=20,22-21=21,23-22=22,可得被减数、减数、差都是以2为底数的幂的形式,减数和差的指数相同,被减数的指数比减数和差的指数都多1,第n个等式是:2n−2n−1=2n−1。
    22、
    【解析】
    证Rt△AED≌Rt△AFB,推出S△AED=S△AFB,根据四边形ABCD的面积是24cm2得出正方形AFCE的面积是12cm2,求出AE、EC的长,根据勾股定理求出AC即可.
    【详解】
    解:∵四边形AFCE是正方形,
    ∴AF=AE,∠E=∠AFC=∠AFB=90°,
    ∵在Rt△AED和Rt△AFB中

    ∴Rt△AED≌Rt△AFB(HL),
    ∴S△AED=S△AFB,
    ∵四边形ABCD的面积是12cm2,
    ∴正方形AFCE的面积是12cm2,
    ∴AE=EC=(cm),
    根据勾股定理得:AC=,
    故答案为:.
    本题考查了全等三角形的性质和判定,正方形性质,勾股定理等知识点的应用.关键是求出正方形AFCE的面积.
    23、1
    【解析】
    过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值
    【详解】
    解:
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    过点A作AE⊥BC于E,
    ∴当AE∥QP时,则四边形ABPQ是直角梯形,
    ∵∠B=60°,AB=8cm,
    ∴BE=4cm,
    ∵P,Q运动的速度都为每秒1cm,
    ∴AQ=10﹣t,AP=t,
    ∵BE=4,
    ∴EP=t﹣4,
    ∵AE⊥BC,AQ∥EP,AE∥QP,
    ∴QP⊥BC,AQ⊥AD,
    ∴四边形AEPQ是矩形,
    ∴AQ=EP,
    即10﹣t=t﹣4,
    解得t=1,
    故答案为:1.
    此题考查直角梯形,平行四边形的性质,解题关键在于作辅助线
    二、解答题(本大题共3个小题,共30分)
    24、正整数解为3,1.
    【解析】
    先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:
    由①得:x>2,
    由②得:x≤1,
    ∴原不等式组的解集为2<x≤1,
    ∴不等式组的正整数解为3,1.
    本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.
    25、△BCD是直角三角形
    【解析】
    首先在Rt△BAD中,利用勾股定理求出BD的长,再根据勾股定理逆定理在△BCD中,证明△BCD是直角三角形.
    【详解】
    △BCD是直角三角形,
    理由:在Rt△BAD中,
    ∵AB=AD=2,
    ∴BD==,
    在△BCD中,BD2+CD2=()2+12=9,BC2=32=9,
    ∴BD2+CD2=BC2,
    △BCD是直角三角形.
    此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    26、(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC的长为,AD的长为2,BD的长为;(3)△ABD为 直角三角形,四边形ADBC面积是1.
    【解析】
    (1)根据题意画出图形,进一步得到D点的坐标;
    (2)根据勾股定理可求线段AC的长,AD的长,BD的长;
    (3)根据勾股定理的逆定理可得△ABD为直角三角形,再根据矩形的面积公式即可求解.
    【详解】
    (1)如图所示:D点的坐标是(0,﹣4);
    (2)线段AC的长为 AD的长为BD的长为
    (3)∵

    ∴△ABD为 直角三角形,四边形ADBC面积是
    考查了勾股定理,勾股定理的逆定理,矩形的面积,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年新疆生产建设兵团第二师二十五团中学九上数学开学学业质量监测试题【含答案】:

    这是一份2024年新疆生产建设兵团第二师二十五团中学九上数学开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年新疆生产建设兵团第二师二十五团中学九年级数学第一学期开学检测模拟试题【含答案】:

    这是一份2024-2025学年新疆生产建设兵团第二师二十五团中学九年级数学第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年新疆生产建设兵团27团中学九年级数学第一学期开学检测模拟试题【含答案】:

    这是一份2024-2025学年新疆生产建设兵团27团中学九年级数学第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map