2025届山东省临沂市九年级数学第一学期开学达标检测模拟试题【含答案】
展开
这是一份2025届山东省临沂市九年级数学第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式 有意义,则x的取值范围是
A.x>1B.x<1C.x≠1D.x≠0
2、(4分)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择 ( )
A.甲B.乙C.丙D.丁
3、(4分)如图,的一边在轴上,长为5,且,反比例函数和分别经过点,,则的周长为
A.12B.14C.D.
4、(4分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )
A.如果∠C﹣∠B=∠A,则△ABC是直角三角形
B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°
C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形
5、(4分)关于的一元二次方程有两个不相等的实数根,则实数的取值范围是( )
A.B.C.D.
6、(4分)若平行四边形中两个邻角的度数比为1:3,则其中较小的内角是( )
A.30°B.45°C.60°D.75°
7、(4分)以下列长度(单位:cm)为边长的三角形是直角三角形的是( )
A.3,4,5B.1,2,3C.5,7,9D.6,10,12
8、(4分)如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )
A.林老师家距超市1.5千米
B.林老师在书店停留了30分钟
C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的
D.林老师从书店到家的平均速度是10千米/时
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,点D,E分别是BC,AC的中点,AB=8,则DE的长为________.
10、(4分)菱形ABCD的两条对角线长分别为6和4,则菱形ABCD的面积是_____.
11、(4分)如图,在边长为1的等边△ABC的边AB取一点D,过点D作DE⊥AC于点E,在BC延长线取一点F,使CF=AD,连接DF交AC于点G,则EG的长为________
12、(4分)因式分解:____.
13、(4分)如图,在平面直角坐标系中,正方形的边长为2,点的坐标为.若直线与正方形有两个公共点,则的取值范围是____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)按要求完成下列尺规作图(不写作法,保留作图痕迹)
(1)如图①,点A绕某点M旋转后,A的对应点为,求作点M.
(2)如图②,点B绕某点N顺时针旋转后,B的对应点为,求作点N.
15、(8分)如图,在中,AD是BC边上的中线,E是AD的中点,延长BE到F,使,连接AF、CF、DF.
求证:;
若,试判断四边形ADCF的形状,并证明你的结论.
16、(8分)如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形.
(1)求证:▱ABCD为矩形;
(2)若AB=4,求▱ABCD的面积.
17、(10分)如图,在矩形中,对角线的垂直平分线分别交、、于点、、,连接和.
(1)求证:四边形为菱形.
(2)若,,求菱形的周长.
18、(10分)阅读下列题目的解题过程:
已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.
解:∵a2c2﹣b2c2=a4﹣b4 (A)
∴c2(a2﹣b2)=(a2+b2)(a2﹣b2) (B)
∴c2=a2+b2 (C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)错误的原因为: ;
(3)本题正确的结论为: .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一组数据1,2,x,4的众数是1,则这组数据的方差为_____.
20、(4分)如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1,则a﹣b的值为____.
21、(4分)点A(2,1)在反比例函数y=的图象上,当1<x<4时,y的取值范围是 .
22、(4分)平面直角坐标系xOy中,直线y=11x﹣12与x轴交点坐标为_____.
23、(4分)已知m是一元二次方程的一个根 , 则代数式的值是_____
二、解答题(本大题共3个小题,共30分)
24、(8分)家乐商场销售某种衬衣,每件进价100元,售价160元,平均每天能售出30件为了尽快减少库存,商场采取了降价措施.调查发现,这种衬衣每降价1元,其销量就增加3件.商场想要使这种衬衣的销售利润平均每天达到3600元,每件衬衣应降价多少元?
25、(10分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.
(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)
(2)求证:点D到BA,BC的距离相等.
26、(12分)已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.
(1)求证:CD⊥AB;
(2)求该三角形的腰的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分式分母不为0,所以,解得.
故选:C.
2、A
【解析】
∵甲的平均数和丙的平均数相等大于乙和丁的平均数,
∴从甲和丙中选择一人参加比赛,
又∵甲的方差与乙的方差相等,小于丙和丁的方差.
∴选择甲参赛,故选A.
考点:方差;算术平均数.
3、B
【解析】
设点,则点,,然后根据的长列出方程,求得的值,得到的坐标,解直角三角形求得,就可以求得的周长。
【详解】
解:设点,则点,,
,
四边形是平行四边形,
,
,解得,
,
作于,则,
,
,
的周长,
故选:.
本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,用点,的横坐标之差表示出的长度是解题的关键.
4、B
【解析】
直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.
【详解】
解:A、∵∠C+∠B+∠A=180°(三角形内角和定理),∠C﹣∠B=∠A,∴∠C+∠B+(∠C﹣∠B)=180°,∴2∠C=180°,∴∠C=90°,故该选项正确,
B、如果c2=b2﹣a2,则△ABC是直角三角形,且∠B=90°,故该选项错误,
C、化简后有c2=a2+b2,则△ABC是直角三角形,故该选项正确,
D、设三角分别为5x,3x,2x,根据三角形内角和定理可得,5x+3x+2x=180°,则x=18°,所以这三个角分别为:90度,36度,54度,则△ABC是直角三角形,故该选项正确.
故选B.
考查了命题与定理的知识,解题的关键是了解直角三角形的判定方法.
5、B
【解析】
由方程有两个不相等的实数根结合根的判别式,可得出△=36-1k>0,解之即可得出实数k的取值范围.
【详解】
∵方程x2-1x+k=0有两个不相等的实数根,
∴△=(-1)2-1k=16-1k>0,
解得:k<1.
故选:B.
此题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
6、B
【解析】
根据平行四边形的性质,可设较小的角为x,较大的角是3x,列式子即可得出结果.
【详解】
设较小的角为x,较大的是3x,x+3x=180,x=45°.
故选B.
本题考查平行四边形的性质,比较简单.
7、A
【解析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.
【详解】
A. 因为3+4=5,所以三条线段能组成直角三角形;
B. 因为1+2≠3,所以三条线段不能组成直角三角形;
C. 因为5+7≠9,所以三条线段不能组成直角三角形;
D. 因为6+10≠12,所以三条线段不能组成直角三角形;
故选:A.
此题考查勾股定理的逆定理,难度不大
8、D
【解析】
分析:
根据图象中的数据信息进行分析判断即可.
详解:
A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;
B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;
C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;
D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.
故选D.
点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
【分析】根据三角形的中位线定理进行求解即可得.
【详解】∵D,E分别是BC,AC的中点,
∴DE是△ABC的中位线,
∴DE=AB==1,
故答案为:1.
【点睛】本题考查了三角形中位线定理,熟记定理的内容是解题的关键.
10、1
【解析】
根据菱形的面积等于对角线积的一半,即可求得其面积.
【详解】
∵菱形ABCD的两条对角线长分别为6和4,
∴其面积为4×6=1.
故答案为:1.
此题考查了菱形的性质.注意熟记①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度).
11、
【解析】
过D作BC的平行线交AC于H,通过求证△DHG和△FCG全等,推出HG=CG,再通过证明△ADH是等边三角形和DE⊥AC,推出AE=EH,即可推出AE+GC=EH+HG,可得EG=AC,即可推出EG的长度.
【详解】
解:如图,过D作DH∥BC,交AC于点H.
∴∠F=∠GDH,
∵△ABC是等边三角形,
∴∠ADH=∠B=60°,∠AHD=∠ACB=60°,
∴△ADH是等边三角形,
∴AD=DH,
∵AD=CF,
∴DH=CF,
∵∠DGH=∠FGC,
∴△DGH≌△FGC(AAS),
∴HG=CG.
∵DE⊥AC,△ADH是等边三角形,
∴AE=EH,
∴AE+CG=EH+HG,
∴EG=AC=;
故答案为:.
本题主要考查等边三角形的判定与性质、平行线的性质、全等三角形的判定与性质,关键在于正确地作出辅助线,熟练运用相关的性质、定理,认真地进行计算.
12、
【解析】
先提取4,然后利用平方差公式计算.
【详解】
原式=4(m2-9)=4(m+3)(m-3),
故答案是:4(m+3)(m-3)
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,一般有公因式会先提取公因式.
13、﹣1<b<1
【解析】
当直线y=x+b过D或B时,求得b,即可得到结论.
【详解】
∵正方形ABCD的边长为1,点A的坐标为(1,1),∴D(1,3),B(3,1).
当直线y=x+b经过点D时,3=1+b,此时b=1.
当直线y=x+b经过点B时,1=3+b,此时b=﹣1.
所以,直线y=x+b与正方形有两个公共点,则b的取值范围是﹣1<b<1.
故答案为﹣1<b<1.
本题考查了一次函数图象上点的坐标特征,正方形的性质,关键是掌握待定系数法正确求出函数的解析式.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)见解析
【解析】
(1)连结AA′,作AA′的垂直平分线与AA′的交点为M点;
(2)连结BB′,作BB′的垂直平分线得到BB′的中点,然后以BB′为直径作圆,则圆与BB′的垂直平分线的交点即为N点.
【详解】
解:如图①,点M即为所求;
如图②,点N即为所求.
① ②
考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.关键是熟练掌握线段垂直平分线的作法.
15、(1)证明见解析(2)四边形AFCD是菱形
【解析】
(1)只要证明四边形ABDF是平行四边形即可;
(2)结论:四边形AFCD是菱形.首先证明四边形ADCD是平行四边形,再证明DA=DC即可.
【详解】
(1),,
四边形ABDF是平行四边形,
;
结论:四边形ADCF是菱形,理由如下:
,
,
,
,
四边形ABDF是平行四边形,
,,
,
四边形AFCD是平行四边形,
,
四边形AFCD是菱形.
本题考查了平行四边形的判定与性质、菱形的判定、直角三角形斜边中线等,熟练掌握相关的性质与定理是解题的关键.
16、(1)见解析;(2).
【解析】
(1)根据题意可求OA=OB=DO,∠AOB=60°,可得∠BAD=90°,即结论可得;
(2)根据勾股定理可求AD的长,即可求▱ABCD的面积.
【详解】
解(1)∵△AOB为等边三角形∴∠BAO=60°=∠AOB,OA=OB
∵四边形ABCD是平行四边形
∴OB=OD,
∴OA=OD
∴∠OAD=30°,
∴∠BAD=30°+60°=90°
∴平行四边形ABCD为矩形;
(2)在Rt△ABC中,∠ACB=30°,
∴AB=4,BC=AB=4
∴▱ABCD的面积=4×4=16
本题考查了矩形的性质和判定,等边三角形的性质,灵活运用这些性质解决问题是本题的关键.
17、(1)详见解析;(2)20
【解析】
(1)求出AO=OC,∠AOE=∠COF,根据平行线的性质得出∠EAO=∠FCO,根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(2)设菱形的边长为由题意得:,,,再利用勾股定理进行计算即可解答.
【详解】
(1)∵四边形为矩形,
∴,
∴,
又∵是的垂直平分线,
∴,,
在和中,,
∴∴
∵,∴四边形为平行四边形.
∵.∴四边形为菱形
(2)解:设菱形的边长为由题意得:,.
又∵,,∴,
∵四边形为矩形,
∴,
在中,由勾股定理得:
又∵,,,
∴,解得.
∴菱形的周长=5×4=20
此题考查线段垂直平分线的性质,菱形的判定与性质,矩形的性质,解题关键在于证明△AEO≌△CFO.
18、(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.
【解析】【分析】(1)根据题目中的书写步骤可以解答本题;
(2)根据题目中B到C可知没有考虑a=b的情况;
(3)根据题意可以写出正确的结论.
【详解】(1)由题目中的解答步骤可得,
错误步骤的代号为:C,
故答案为:C;
(2)错误的原因为:没有考虑a=b的情况,
故答案为:没有考虑a=b的情况;
(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,
故答案为:△ABC是等腰三角形或直角三角形.
【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.5
【解析】
试题分析:众数是这组数据出现次数最多的数,由此判断x为1,这组数据的平均数是(1+2+1+4)÷4=2,所以方差为,=1.5.故这组数据的方差为1.5.
考点:方差计算.
20、1
【解析】
试题解析:由B点平移前后的纵坐标分别为2、4,可得B点向上平移了2个单位,
由A点平移前后的横坐标分别是为1、3,可得A点向右平移了2个单位,
由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
所以点A、B均按此规律平移,
由此可得a=2,b=2,
故a-b=1.
【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
21、<y<1
【解析】
试题分析:将点A(1,1)代入反比例函数y=的解析式,求出k=1,从而得到反比例函数解析式,再根据反比例函数的性质,由反比例图像在第一象限内y随x的增大而减小,可根据当x=1时,y=1,当x=4时,y=,求出当1<x<4时,y的取值范围<y<1.
考点:1、待定系数法求反比例函数解析式;1、反比例函数的性质
22、 (,0).
【解析】
直线与x轴交点的横坐标就是y=0时,对应x的值,从而可求与x轴交点坐标.
【详解】
解:当y=0时,0=11x﹣12
解得x=,
所以与x轴交点坐标为(,0).
故答案为(,0).
本题主要考查一次函数与坐标轴的交点,掌握一次函数与坐标轴的交点的求法是解题的关键.
23、.
【解析】
把代入方程,得出关于的一元二次方程,再整体代入.
【详解】
当时,方程为,
即,
所以,.
故答案为:.
本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了整体代入的思想.
二、解答题(本大题共3个小题,共30分)
24、1元
【解析】
设每件衬衣降价x元,根据商场平均每天盈利数=每件的盈利×售出件数列出方程求解即可.
【详解】
解:设每件衬衣降价x元,
依题意,得:(160﹣100﹣x)(1+3x)=3600,
整理,得:x2﹣50x+600=0,
解得:x1=20,x2=1,
∵为了尽快减少库存,
∴x=1.
答:每件衬衣应降价1元.
本题考查一元二次方程的应用,商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.
25、(1)如图所示,DF即为所求,见解析;(2)见解析.
【解析】
(1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;
(2)根据角平分线的性质解答即可.
【详解】
(1)如图所示,DF即为所求:
(2)∵△ABC中,∠A=60°,∠C=40°,
∴∠ABC=80°,
∵DE垂直平分BC,
∴BD=DC,
∴∠DBC=∠C=40°,
∴∠ABD=∠DBC=40°,
即BD是∠ABC的平分线,
∵DF⊥AB,DE⊥BC,
∴DF=DE,
即点D到BA,BC的距离相等.
此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.
26、(1)见解析;(2)
【解析】
试题分析:根据勾股定理的逆定理直接证明即可.
设腰长为x,则,根据勾股定理列出方程,解方程即可.
试题解析:
(1)∵BC=20cm,CD=16cm,BD=12cm,满足,
根据勾股定理逆定理可知,∠BDC=90°,即CD⊥AB;
(2)设腰长为x,则,由上问可知,
即:,解得:腰长.
点睛:勾股定理的逆定理:如果三角形中,两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届山东省青岛市温泉中学数学九年级第一学期开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省临沂市郯城县数学九年级第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省济宁鱼台县联考九年级数学第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。