年终活动
搜索
    上传资料 赚现金

    2025届黑龙江省哈尔滨市美加外国语学校九年级数学第一学期开学教学质量检测试题【含答案】

    立即下载
    加入资料篮
    2025届黑龙江省哈尔滨市美加外国语学校九年级数学第一学期开学教学质量检测试题【含答案】第1页
    2025届黑龙江省哈尔滨市美加外国语学校九年级数学第一学期开学教学质量检测试题【含答案】第2页
    2025届黑龙江省哈尔滨市美加外国语学校九年级数学第一学期开学教学质量检测试题【含答案】第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届黑龙江省哈尔滨市美加外国语学校九年级数学第一学期开学教学质量检测试题【含答案】

    展开

    这是一份2025届黑龙江省哈尔滨市美加外国语学校九年级数学第一学期开学教学质量检测试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
    A.1B.3C.4D.5
    2、(4分)下列命题是假命题的是( )
    A.四个角相等的四边形是矩形
    B.对角线相等的平行四边形是矩形
    C.对角线垂直的四边形是菱形
    D.对角线垂直的平行四边形是菱形
    3、(4分)若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为( )
    A.10B.7或10C.4D.7或4
    4、(4分)洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工
    作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的
    图象大致为( )
    A.B.C.D.
    5、(4分)如图,在中,点、分别是、的中点,如果,那么的长为( ).
    A.4B.5C.6D.7
    6、(4分)正比例函数的图象上有两点,,则与的大小关系是( )
    A.B.C.D.
    7、(4分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是
    A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多
    C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱
    8、(4分)已知直线y=(k﹣3)x+k经过第一、二、四象限,则k的取值范围是( )
    A.k≠3B.k<3C.0<k<3D.0≤k≤3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系中,点P(﹣,﹣1)到原点的距离为_____.
    10、(4分)如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出_____个平行四边形.
    11、(4分)点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为 .
    12、(4分)如图,正方形和正方形中,点在上,,,是的中点,那么的长是__________(用含、的代数式表示).
    13、(4分)直线y=3x-2与x轴的交点坐标为____________________
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图 1,在正方形 ABCD 中, P 是对角线 AC 上的一点,点 E 在 BC 的延长线上,且PE  PB .
    (1)求证: △BCP≌△DCP ;
    (1)求证: DPE  ABC ;
    (3)把正方形 ABCD 改为菱形 ABCD ,且 ABC  60 ,其他条件不变,如图 1.连接 DE , 试探究线段 BP 与线段 DE 的数量关系,并说明理由.
    15、(8分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.
    16、(8分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点,将矩形的一个角沿直线 折叠,使得点 落在对角线 上的点 处,折痕与 轴交于点 .
    (1)求直线所对应的函数表达式;
    (2)若点 在线段上,在线段 上是否存在点 ,使以 为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
    17、(10分)如图,在四边形ABCD中,AB∥CD,AC.BD相交于点O,且O是BD的中点
    (1)求证:四边形ABCD是平行四边形;
    (2)若,,求四边形ABCD的周长.
    18、(10分)已知正方形中,为对角线上一点,过点作交于点,连接,为的中点,连接.
    (1)如图1,求证:;
    (2)将图1中的绕点逆时针旋转45°,如图2,取的中点,连接.问(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.
    (3)将图1中的绕点逆时计旋转任意角度,如图3,取的中点,连接.问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某n边形的每个外角都等于它相邻内角的,则n=_____.
    20、(4分)重庆新高考改革方案正式确定,高考总成绩的组成科目由“语数外+文综/理综”变成“3+1+2”,其中“2”是指学生需从思想政治、地理、化学、生物学四门科目中自选2门科目,则小明从这四门学科中恰好选择化学、生物的概率为_____.
    21、(4分)正方形的一边和一条对角线所成的角是________度.
    22、(4分)一组数据:,计算其方差的结果为__________.
    23、(4分)已知关于x的一元二次方程(a2﹣1)x2+3ax﹣3=0的一个解是x=1,则a的值是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知一次函数的图像经过点M(-1,3)、N(1,5)。直线MN与坐标轴相交于点A、B两点.
    (1)求一次函数的解析式.
    (2)如图,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转90°得到线段DE,作直线CE交x轴于点F,求的值.
    (3)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化,若不变,请求出其值;若变化,请说明理由.
    25、(10分)如图,BD是▱ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.
    26、(12分)如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
    (1)求证:EF是⊙O的切线;
    (2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据二次函数的图象与性质即可求出答案.
    【详解】
    解:①由抛物线的对称轴可知:,
    ∴,
    由抛物线与轴的交点可知:,
    ∴,
    ∴,故①正确;
    ②抛物线与轴只有一个交点,
    ∴,
    ∴,故②正确;
    ③令,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,故③正确;
    ④由图象可知:令,
    即的解为,
    ∴的根为,故④正确;
    ⑤∵,
    ∴,故⑤正确;
    故选D.
    考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
    2、C
    【解析】
    试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;
    B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;
    C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;
    D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.
    故选C.
    考点:命题与定理.
    3、C
    【解析】
    根据等腰三角形性质分为两种情况解答:当边长4cm为腰或者4cm为底时
    【详解】
    当4cm是等腰三角形的腰时,则底边长18-8=10cm,此时4,4,10不能组成三角形,应舍去;当4cm是等腰三角形的底时,则腰长为(18-4)÷2=7cm,此时4,7,7能组成三角形,所以此时腰长为7,底边长为4,故选C
    本题考查等腰三角形的性质与三角形三边的关系,本题关键在于分情况计算出之后需要利用三角形等边关系判断
    4、D
    【解析】
    根据题意对浆洗一遍的三个阶段的洗衣机内的水量分析得到水量与时间的函数图象,然后即可选择:
    每浆洗一遍,注水阶段,洗衣机内的水量从1开始逐渐增多;清洗阶段,洗衣机内的水量不变且保持一段时间;排水阶段,洗衣机内的水量开始减少,直至排空为1.纵观各选项,只有D选项图象符合.
    故选D.
    5、C
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.
    【详解】
    解:∵点D、E分别是AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∴BC=2DE=2×3=1.
    故选C.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,熟记定理是解题的关键.
    6、A
    【解析】
    利用一次函数图象上点的坐标特征可求出y1与y1的值,比较后即可得出结论(利用一次函数的性质解决问题亦可).
    【详解】
    解:当x=−1时,y1=−(−1)=1;
    当x=1时,y1=−1.
    ∵1>−1,
    ∴y1>y1.
    故选:A.
    本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
    7、D
    【解析】
    A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
    B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
    C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;
    D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.
    综上即可得出结论.
    【详解】
    A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
    B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
    C、设当x≥25时,yA=kx+b,
    将(25,30)、(55,120)代入yA=kx+b,得:
    ,解得:,
    ∴yA=3x-45(x≥25),
    当x=35时,yA=3x-45=60>50,
    ∴每月上网时间为35h时,选择B方式最省钱,结论C正确;
    D、设当x≥50时,yB=mx+n,
    将(50,50)、(55,65)代入yB=mx+n,得:

    解得:,
    ∴yB=3x-100(x≥50),
    当x=70时,yB=3x-100=110<120,
    ∴结论D错误.
    故选D.
    本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.
    8、C
    【解析】
    根据一次函数的性质列式求解即可.
    【详解】
    由题意得

    ∴ 0<k<3.
    故选C.
    本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    ∵点P的坐标为,
    ∴OP=,即点P到原点的距离为2.
    故答案为2.
    点睛:平面直角坐标系中,点P到原点的距离=.
    10、1
    【解析】
    根据全等三角形的性质及平行四边形的判定,可找出现1个平行四边形.
    【详解】
    解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出1个平行四边形.
    故答案为1.
    此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.
    11、12或4
    【解析】
    试题分析:当图形处于同一个象限时,则k=8+4=12;当图形不在同一个象限时,则k=8-4=4.
    考点:反比例函数的性质
    12、
    【解析】
    连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.
    【详解】
    解:连接AC、CF,
    在正方形ABCD和正方形CEFG中,
    ∠ACG=45°,∠FCG=45°,
    ∴∠ACF=90°,
    ∵BC=a,CE=b,

    由勾股定理得: ,
    ∵∠ACF=90°,H是AF的中点,
    ∴CH=AF=.
    本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
    13、(,0)
    【解析】
    交点既在x轴上,又在直线直线y=3x-2上,而在x轴上的点其纵坐标为0,因此令y=0,代入关系式求出x即可.
    【详解】
    当y=0时,即3x-2=0,解得:x=,
    ∴直线y=3x-2与x轴的交点坐标为(,0),
    故答案为:(,0).
    本题考查直线与x轴的交点坐标,实际上就是令y=0,求x即可,数形结合更直观,更容易理解.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(1)见解析;(3)BP=DE,理由见解析.
    【解析】
    (1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可;
    (1)根据(1)的结论可得∠CBP=∠CDP,根据PE  PB可得∠CBP=∠E,于是∠CDP=∠E,再由∠1=∠1可进一步推得∠DPE=∠DCE,最后由AB∥CD,可得∠DCE=∠ABC,从而结论得证;
    (3)BP =DE. 由(1)的结论可得PD=PB=PE,由(1)的结论可知∠DPE=∠ABC=60°,进一步可推得△PDE是等边三角形,则DE=PE=PB,即得结论.
    【详解】
    (1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
    在△BCP和△DCP中,
    ∵ ,
    ∴△BCP≌△DCP(SAS);
    (1)证明:如图,由(1)知,△BCP≌△DCP,
    ∴∠CBP=∠CDP,
    ∵PE=PB,
    ∴∠CBP=∠E,
    ∴∠CDP=∠E,
    ∵∠1=∠1,
    ∴180°﹣∠1﹣∠CDP=180°﹣∠1﹣∠E,
    即∠DPE=∠DCE,
    ∵AB∥CD,
    ∴∠DCE=∠ABC,
    ∴∠DPE=∠ABC;
    (3)BP=DE,理由如下:
    由(1)知,△BCP≌△DCP,所以PD=PB=PE,
    由(1)知,∠DPE=∠ABC=60°,
    ∴△PDE是等边三角形,
    ∴DE=PE=PB,
    ∴DE=PB.
    本题考查了正方形的性质、全等三角形的判定与性质、菱形的性质、等腰三角形的性质和等边三角形的判定与性质,其中第(1)小题中的“蝴蝶型”三角形是证明两个角相等常用的模型,是解题的关键;而第(3)小题则充分利用了(1)(1)两个小题的结论,体现了整道题在方法和结论上的连续性.
    15、DE=BF,DE∥BF.
    【解析】
    由平行四边形的性质可得AD=BC,AD∥BC,由“SAS”可证△ADE≌△CBF,即可得结论.
    【详解】
    解:DE∥BF DE=BF
    .理由如下:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∴∠DAC=∠ACB,且AE=CF,AD=BC,
    ∴△ADE≌△CBF(SAS),
    ∴DE=BF,∠AED=∠BFC,
    ∴∠DEC=∠AFB,
    ∴DE∥BF.
    ∴DE=BF,DE∥BF.
    本题考查了平行四边形的性质,全等三角形的判定和性质,熟练运用平行四边形的性质是本题的关键.
    16、(1)y=2x-1;(2)存在点,Q(,), 使以为顶点的四边形为平行四边形.
    【解析】
    (1)由矩形的性质可得出点B的坐标及OA,AB的长,利用勾股定理可求出OB的长,设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2,利用勾股定理可求出a值,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD所对应的函数表达式;
    (2)先假设存在点P 满足条件,过E作 交BC于P作,交BD 于Q点,这样得到点Q,四边形 即为所求平行四边形,过E作 得 , 可得E点坐标, 根据点B、E坐标求出直线BD的解析式, 又 根据平行的直线,k值相等,求出PE解析式, 再求点出P坐标,从而求解.
    【详解】
    (1)由题意,得:点B的坐标为(8,6),OA=8,AB=OC=6,
    ∴OB= =1.
    设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2.
    ∵OD2=OE2+DE2,即(8-a)2=22+a2,
    ∴a=3,
    ∴OD=5,
    ∴点D的坐标为(5,0).
    设直线BD所对应的函数表达式为y=kx+b(k≠0),
    将B(8,6),D(5,0)代入y=kx+b,得:
    解得: ∴直线BD所对应的函数表达式为y=2x-1.
    (2)如图2,假设在线段 上存在点P 使 为顶点的四边形为平行四边形,过E作 交BC于P,过点P作,交BD 于Q点,四边形 即为所求平行四边形,过E作 得 ,,

    直线 ,
    又 , ,
    ,在线段上存在点P(5,6),
    使以为顶点的四边形为平行四边形,
    ∵,设点Q的坐标为(m,2m-1),四边形DEPQ为平行四边形,
    D(5,0),,点P的纵坐标为6,
    ∴6-(2m-1)=-0,解得:m=,
    ∴点Q的坐标为(,).
    ∴存在,点Q的坐标为(,).
    本题考查矩形的性质、勾股定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质,熟练掌握和灵活运用相关知识是解题的关键.
    17、 (1)详见解析;(2)32
    【解析】
    (1)利用全等三角形的性质证明即可解决问题.
    (2)证明四边形ABCD是菱形,即可求四边形ABCD的周长.
    【详解】
    解:(1)证明:,

    ,,


    又,
    ∴四边形ABCD是平行四边形.
    (2)∵四边形ABCD是平行四边形,,
    ∴四边形ABCD是菱形,
    ∴四边形ABCD的周长.
    本题考查平行四边形的判定和性质,菱形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    18、 (1)见解析;(2)见解析;(3)见解析.
    【解析】
    (1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
    (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
    (3)结论依然成立.过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出结论.
    【详解】
    (1)在中,为的中点,
    ∴.
    同理,在中,.
    ∴.
    (2)如图②,(1)中结论仍然成立,即EG=CG.
    理由:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
    ∴∠AMG=∠DMG=90°.
    ∵四边形ABCD是正方形,
    ∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.
    在△DAG和△DCG中,

    ∴△DAG≌△DCG(SAS),
    ∴AG=CG.
    ∵G为DF的中点,
    ∴GD=GF.
    ∵EF⊥BE,
    ∴∠BEF=90°,
    ∴∠BEF=∠BAD,
    ∴AD∥EF,
    ∴∠N=∠DMG=90°.
    在△DMG和△FNG中,

    ∴△DMG≌△FNG(ASA),
    ∴MG=NG.
    ∵∠DA∠AMG=∠N=90°,
    ∴四边形AENM是矩形,
    ∴AM=EN,
    在△AMG和△ENG中,

    ∴△AMG≌△ENG(SAS),
    ∴AG=EG,
    ∴EG=CG;
    (3)如图③,(1)中的结论仍然成立.
    理由:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN⊥AB于N.
    ∵MF∥CD,
    ∴∠FMG=∠DCG,∠MFD=∠CDG.∠AQF=∠ADC=90°
    ∵FN⊥AB,
    ∴∠FNH=∠ANF=90°.
    ∵G为FD中点,
    ∴GD=GF.
    在△MFG和△CDG中

    ∴△CDG≌△MFG(AAS),
    ∴CD=FM.MG=CG.
    ∴MF=AB.
    ∵EF⊥BE,
    ∴∠BEF=90°.
    ∵∠NHF+∠HNF+∠NFH=∠BEF+∠EHB+∠EBH=180°,
    ∴∠NFH=∠EBH.
    ∵∠A=∠ANF=∠AMF=90°,
    ∴四边形ANFQ是矩形,
    ∴∠MFN=90°.
    ∴∠MFN=∠CBN,
    ∴∠MFN+∠NFE=∠CBN+∠EBH,
    ∴∠MFE=∠CBE.
    在△EFM和△EBC中

    ∴△EFM≌△EBC(SAS),
    ∴ME=CE.,∠FEM=∠BEC,
    ∵∠FEC+∠BEC=90°,
    ∴∠FEC+∠FEM=90°,
    即∠MEC=90°,
    ∴△MEC是等腰直角三角形,
    ∵G为CM中点,
    ∴EG=CG,EG⊥CG.
    考查了正方形的性质的运用,矩形的判定就性质的运用,旋转的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.
    【详解】
    解:因为多边形的每个外角和它相邻内角的和为180°,
    又因为每个外角都等于它相邻内角的,
    所以外角度数为180°×=36°.
    ∵多边形的外角和为360°,
    所以n=360÷36=1.
    故答案为:1.
    本题考查多边形的内角与外角关系,以及多边形的外角和为360°.
    20、
    【解析】
    先用树状图将所有可能的情况列出来,然后找到恰好选中化学、生物两科的情况数,然后利用概率公式等于恰好选中化学、生物两科的情况数与总情况数之比即可求解.
    【详解】
    设思想政治、地理、化学、生物(分别记为A、B、C、D),
    画树状图如图所示,
    由图可知,共有12种等可能结果,其中该同学恰好选中化学、生物两科的有2种结果,
    所以该同学恰好选中化学、生物两科的概率为=.
    故答案为: .
    本题主要考查树状图或列表法求随机事件的概率,掌握树状图或列表法及概率公式是解题的关键.
    21、45
    【解析】
    正方形的对角线和其中的两边长构成等腰直角三角形,故正方形的一条对角线和一边所成的角为45度.
    【详解】
    解:∵正方形的对角线和正方形的其中两条边构成等腰直角三角形
    ∴正方形的一条对角线和一边所成的角是45°.
    故答案为:45°.
    本题主要考查正方形对角线相等平分垂直的性质.
    22、
    【解析】
    方差是用来衡量一组数据波动大小的量.数据5,5,5,5,5全部相等,没有波动,故其方差为1.
    【详解】
    解:由于方差是反映一组数据的波动大小的,而这一组数据没有波动,故它的方差为1.
    故答案为:1.
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    23、﹣1.
    【解析】
    直接把x=1代入进而方程,再结合a2﹣1≠2,进而得出答案.
    【详解】
    ∵关于x的一元二次方程(a2﹣1)x2+3ax﹣3=2有一个根为x=1,
    ∴(a2﹣1)×1+3a×1﹣3=2,且a2﹣1≠2,
    整理,得(a+1)(a﹣1)=2且(a+1)(a﹣1)≠2.
    则a的值为:a=﹣1.
    故答案是:﹣1.
    本题考查了一元二次方程解的定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(4)y=x+4.(4);(4)不变,.
    【解析】
    试题分析:(4)用待定系数法,将M,N两点坐标代入解析式求出k,b即得一次函数解析式;(4)∵点C与点B关于x轴对称,B(0,4),∴C(0,-4),再由旋转性质可得DB=DE,∠BDE=90º,过点E作EP⊥x轴于P,易证△BDO≌△DEP,∴OD=PE,DP=BO=4,设D(,0),则E(,),设直线CE解析式是:y=kx+b,把C,E两点坐标代入得:,∴,∴CE解析式是y=x-4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,∴===;(4)此题连接BM,因为AO=BO,MO=PO,且∠BOM=∠AOP,得出△BOM≌△AOP(SAS),∵∠PAO=445º,∴∠MBP=∠PAO=445º,∴∠MBP=90°,在Rt△MBP中,MQ=PQ,∴BQ是此直角三角形斜边中线,等于斜边一半,BQ=MP,MP又是正方形对角线,∴MP=OP,∴BQ:OP=MP:OP=×OP:OP=,∴的值不变,是.
    试题解析:(4)用待定系数法,将M,N两点坐标代入解析式得:,解得b=4,k=4,∴一次函数的解析式是y=x+4;(4)∵点C与点B关于x轴对称,B(0,4),∴C(0,-4),再由旋转性质可得DB=DE,∠BDE=90º,过点E作EP⊥x轴,易证△BDO≌△DEP,设D(,0),则E(,)设直线CE解析式是:y=kx+b,,把C,E两点坐标代入得:,∴∴CE解析式:y=x-4,y=0时,,x=4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,
    ∴===.∴的值是.
    (4)连结BM,由正方形性质可得OM=OP,∠MOP=90º,由A,B点坐标可得AO=BO,又∵∠BOM=∠AOP(同角的余角相等),可证△BOM≌△AOP(SAS),∴∠MBO=∠PAO=480º-45º=445°,∴∠MBP=445º-45º=90°,在Rt△MBP中,MQ=PQ,BQ是此直角三角形斜边中线,等于斜边一半,∴BQ=MP;在Rt△MOP中,,MP=OP;∴BQ:OP=MP:OP=×OP:OP=,当点P在直线AB上运动时,的值不变,是,∴
    考点:4.一次函数性质;4.三角形全等;4.正方形性质.
    25、见解析
    【解析】
    根据平行四边形的性质可得到AB=CD,AB∥CD,从而可得到∠ABE=∠CDF,根据AAS即可判定△AEB≌△CFD,由全等三角形的性质可得到AE=CF,再根据有一组对边平行且相等的四边形是平行四边形即可证出结论.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,
    ∴∠ABE=∠CDF,
    ∵AE⊥BD,CF⊥BD,
    ∴∠AEB=∠CFD=90°,AE∥CF,
    在△AEB和△CFD中,

    ∴△AEB≌△CFD(AAS),
    ∴AE=CF,
    ∵AE∥CF,
    ∴四边形AECF是平行四边形.
    本题考查了平行四边形的判定.熟练掌握平行四边形的判定方法是解题的关键.
    26、(1)见解析;(2)
    【解析】
    (1)连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的切线;
    (2)由∠ACD的度数求出∠OCA为60°,确定出三角形AOC为等边三角形,由半径为2求出AC的长,在直角三角形ACD中,由30度所对的直角边等于斜边的一半求出AD的长,再利用勾股定理求出CD的长,由扇形AOC面积减去三角形AOC面积求出弓形的面积,再由三角形ACD面积减去弓形面积即可求出阴影部分面积.
    【详解】
    (1)连接OC,
    ∵OA=OC,
    ∴∠OAC=∠OCA,
    ∵∠DAC=∠BAC,
    ∴∠DAC=∠OCA,
    ∴AD∥OC,
    ∵AD⊥EF,
    ∴OC⊥EF,
    则EF为圆O的切线;
    (2)∵∠ACD=30°,∠ADC=90°,
    ∴∠CAD=∠OCA=60°,
    ∴△AOC为等边三角形,
    ∴AC=OC=OA=2,
    在Rt△ACD中,∠ACD=30°,
    ∴AD=AC=1,根据勾股定理得:CD=,
    ∴S阴影=S△ACD-(S扇形AOC-S△AOC)=×1×-()=.
    考点:1.切线的判定;2.扇形面积的计算.
    题号





    总分
    得分

    相关试卷

    2023-2024学年黑龙江省哈尔滨市美加外国语学校九上数学期末学业质量监测试题含答案:

    这是一份2023-2024学年黑龙江省哈尔滨市美加外国语学校九上数学期末学业质量监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知抛物线具有如下性质等内容,欢迎下载使用。

    2023-2024学年黑龙江省哈尔滨市美加外国语学校数学八年级第一学期期末达标检测模拟试题含答案:

    这是一份2023-2024学年黑龙江省哈尔滨市美加外国语学校数学八年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了点的位置在,如图,将矩形等内容,欢迎下载使用。

    湖北省武汉外国语学校美加分校2023-2024学年九年级上学期开学数学试卷:

    这是一份湖北省武汉外国语学校美加分校2023-2024学年九年级上学期开学数学试卷,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map