2022届黑龙江省哈尔滨市美加外国语校中考三模数学试题含解析
展开这是一份2022届黑龙江省哈尔滨市美加外国语校中考三模数学试题含解析,共17页。试卷主要包含了答题时请按要求用笔,在平面直角坐标系中,将点P,这个数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是( )
A. B. C. D.
2.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是( )
A. B.
C. D.
3.如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠2
4.如图所示的几何体的俯视图是( )
A. B. C. D.
5.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )
A.M B.N C.P D.Q
6.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为( )
A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)
C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)
7.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )
A. B. C. D.
8.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( )
A.3×109 B.3×108 C.30×108 D.0.3×1010
9.一个几何体的三视图如图所示,则该几何体的形状可能是( )
A. B.
C. D.
10.这个数是( )
A.整数 B.分数 C.有理数 D.无理数
二、填空题(共7小题,每小题3分,满分21分)
11.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.
12.若关于x的方程有两个不相等的实数根,则实数a的取值范围是______.
13.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.
14.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为_________________________.
15.分解因式:___.
16.分解因式:2m2-8=_______________.
17.如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.
三、解答题(共7小题,满分69分)
18.(10分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.
求证:AB=DC.
19.(5分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:
x/元 | … | 15 | 20 | 25 | … |
y/件 | … | 25 | 20 | 15 | … |
已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?
20.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 .
21.(10分)下面是一位同学的一道作图题:
已知线段a、b、c(如图),求作线段x,使
他的作法如下:
(1)以点O为端点画射线,.
(2)在上依次截取,.
(3)在上截取.
(4)联结,过点B作,交于点D.
所以:线段________就是所求的线段x.
①试将结论补完整
②这位同学作图的依据是________
③如果,,,试用向量表示向量.
22.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.
(1)求小明选择去白鹿原游玩的概率;
(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
23.(12分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
24.(14分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:
(1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;
(2)把条形统计图补充完整;
(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.
【详解】
解:∵ab<0,
∴分两种情况:
(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;
(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.
故选D
【点睛】
本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.
2、C
【解析】
根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.
【详解】
A. 当时,能判断;
B. 当时,能判断;
C. 当时,不能判断;
D. 当时,,能判断.
故选:C.
【点睛】
本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.
3、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
【点睛】
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
4、D
【解析】
试题分析:根据俯视图的作法即可得出结论.
从上往下看该几何体的俯视图是D.故选D.
考点:简单几何体的三视图.
5、A
【解析】
解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.
点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.
6、A
【解析】
分顺时针旋转,逆时针旋转两种情形求解即可.
【详解】
解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),
故选A.
【点睛】
本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.
7、B
【解析】
解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF
再由∠BDF+∠ADE=∠BDF+∠BFD=120º
可得∠ADE=∠BFD,又因∠A=∠B=60º,
根据两角对应相等的两三角形相似可得△AED∽△BDF
所以,
设AD=a,BD=2a,AB=BC=CA=3a,
再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,
所以
整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;
把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,
即
故选B.
【点睛】
本题考查相似三角形的判定及性质.
8、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
将数据30亿用科学记数法表示为,
故选A.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
9、D
【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.
考点:由三视图判断几何体.
视频
10、D
【解析】
由于圆周率π是一个无限不循环的小数,由此即可求解.
【详解】
解:实数π是一个无限不循环的小数.所以是无理数.
故选D.
【点睛】
本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.
二、填空题(共7小题,每小题3分,满分21分)
11、﹣18
【解析】
要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.
【详解】
a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)
=ab(a﹣b)2,
当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,
故答案为:﹣18.
【点睛】
本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.
12、a>﹣.
【解析】
试题分析:已知关于x的方程2x2+x﹣a=0有两个不相等的实数根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.
考点:根的判别式.
13、
【解析】
试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣1,
故答案为﹣1.
考点:正数和负数
14、15°、30°、60°、120°、150°、165°
【解析】
分析:根据CD∥AB,CE∥AB和DE∥AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.
详解:①、∵CD∥AB, ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°,
∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;
CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°
②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;
CE∥AB时,∠ECB=∠B=60°.
③如图2,DE∥AB时,延长CD交AB于F, 则∠BFC=∠D=45°,
在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,
∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.
点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.
15、
【解析】
先提取公因式,再利用平方差公式分解因式即可.
【详解】
故答案为:.
【点睛】
本题考查了分解因式,熟练掌握因式法、公式法、十字相乘法、分组分解法的区别,根据题目选择合适的方法是解题的关键.
16、2(m+2)(m-2)
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.
【详解】
2m2-8,
=2(m2-4),
=2(m+2)(m-2)
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.
17、
【解析】
由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.
【详解】
解:由直线a∥b∥c,根据平行线分线段成比例定理,
即可得,
又由AC=3,CE=5,DF=4
可得:
解得:BD=.
故答案为.
【点睛】
此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.
三、解答题(共7小题,满分69分)
18、∵平分平分,
∴
在与中,
.
【解析】
分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.
解答:证明:∵AC平分∠BCD,BC平分∠ABC,
∴∠DBC=∠ABC,∠ACB=∠DCB,
∵∠ABC=∠DCB,
∴∠ACB=∠DBC,
∵在△ABC与△DCB中,
,
∴△ABC≌△DCB,
∴AB=DC.
19、();()此时每天利润为元.
【解析】
试题分析:(1) 根据题意用待定系数法即可得解;
(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.
试题解析:()设,将,和,代入,得:,解得:,
∴;
()将代入()中函数表达式得:
,
∴利润(元),
答:此时每天利润为元.
20、(1)证明见解析;(2)1.
【解析】
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=1,BD=2OD=2,
∴菱形ABCD的面积为:AC•BD=×1×2=1,
故答案为1.
【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
21、①CD;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③.
【解析】
①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证得,即,从而知.
【详解】
①∵,
∴OA:AB=OC:CD,
∵,,,,
∴线段就是所求的线段x,
故答案为:
②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
③∵、,且,
∴,
∴,即,
∴,
∴.
【点睛】
本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.
22、(1);(2)
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
【详解】
(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
∴小明选择去白鹿原游玩的概率=;
(2)画树状图分析如下:
两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
所以小明和小华都选择去秦岭国家植物园游玩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
23、解:(1)该校班级个数为4÷20%=20(个),
只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),
该校平均每班留守儿童的人数为:
=4(名),
补图如下:
(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,
有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,
则所选两名留守儿童来自同一个班级的概率为:=.
【解析】
(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;
(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.
24、(1)50,20%,72°.
(2)图形见解析;
(3)选出的2人来自不同科室的概率=.
【解析】
试题分析:(1)根据调查样本人数=A类的人数除以对应的百分比.样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比×360°.
(2)先求出样本中B类人数,再画图.
(3)画树状图并求出选出的2人来自不同科室的概率.
试题解析:(1)调查样本人数为4÷8%=50(人),
样本中B类人数百分比(50﹣4﹣28﹣8)÷50=20%,
B类人数所在扇形统计图中的圆心角度数是20%×360°=72°;
(2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人)
;
(3)画树状图为:
共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,
所以选出的2人来自不同科室的概率=.
考点:1.条形统计图2.扇形统计图3.列表法与树状图法.
相关试卷
这是一份黑龙江省哈尔滨市美加外国语学校2022-2023学年七下数学期末复习检测试题含答案,共6页。
这是一份2023年黑龙江省哈尔滨市道外区中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年黑龙江省哈尔滨市南岗区中考数学三模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。