终身会员
搜索
    上传资料 赚现金

    2025届哈尔滨松北区七校联考九上数学开学学业质量监测试题【含答案】

    立即下载
    加入资料篮
    2025届哈尔滨松北区七校联考九上数学开学学业质量监测试题【含答案】第1页
    2025届哈尔滨松北区七校联考九上数学开学学业质量监测试题【含答案】第2页
    2025届哈尔滨松北区七校联考九上数学开学学业质量监测试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届哈尔滨松北区七校联考九上数学开学学业质量监测试题【含答案】

    展开

    这是一份2025届哈尔滨松北区七校联考九上数学开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是( )
    A. B.
    C. D.
    2、(4分)在菱形中,,点为边的中点,点与点关于对称,连接、、,下列结论:①;②;③;④,其中正确的是( )
    A.①②B.①②③C.①②④D.①②③④
    3、(4分)若点P(a,2)在第二象限,则a的值可以是( )
    A.B.0C.1D.2
    4、(4分)在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是( )
    A.(2,3) B.(-2,3) C.(-2,-3) D.(-3,2)
    5、(4分)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于( )
    A.75°B.45°C.60°D.30°
    6、(4分)一次函数的图像不经过的象限是:( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    7、(4分)直线y=2x向下平移2个单位长度得到的直线是( )
    A.y=2(x+2) B.y=2(x﹣2) C.y=2x﹣2 D.y=2x+2
    8、(4分)点(1,- 6)关于原点对称的点为( )
    A.(-6,1)B.(-1,6)C.(6,- 1)D.(-1,- 6)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图所示,折叠矩形的一边 AD,使点 D 落在边 BC 的点 F处,已知 AB=8cm,BC=10cm,则 EC 的长为_____cm.
    10、(4分)已知,化简________
    11、(4分)平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.
    12、(4分)如图,已知矩形的对角线相交于点,过点任作一条直线分别交,于,,若,,则阴影部分的面积是______.
    13、(4分)如图,在的两边上分别截取、,使,分别以点、为圆心,长为半径作弧,两弧交于点;连接、、、.若,四边形的周长为,则的长为___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)化简:.
    15、(8分)某学校打算招聘英语教师。对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示。
    (1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制)。从他们的成绩看,应该录取谁?
    (2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最后左边一组分数为:)。
    ①参加该校本次招聘英语教师的应聘者共有______________人(直接写出答案即可)。
    ②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由。
    16、(8分)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:
    (1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;
    (2)求在平移过程中线段AB扫过的面积.
    17、(10分)如图,已知四边形为正方形,,点为对角线上一动点,连接,过点作.交于点,以、为邻边作矩形,连接.
    (1)求证:矩形是正方形;
    (2)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
    18、(10分)已知关于x的方程2x2+kx-1=0.
    (1)求证:方程有两个不相等的实数根.
    (2)若方程的一个根是-1,求方程的另一个根.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)经过多边形一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角是__度.
    20、(4分)若直线与直线平行,且与两坐标轴围成的面积为1,则这条直线的解析式是________________.
    21、(4分)一次函数与的图象如图所示,则不等式kx+b<x+a的解集为_____.
    22、(4分)如图所示,△ABC中,AB=10cm,AC=8cm,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN交AB于点M,交AC于点N,则△AMN的周长为____.
    23、(4分)如图所示,将四根木条组成的矩形木框变成▱ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解不等式组
    25、(10分)化简:÷(a-4)-.
    26、(12分)(1)解不等式组:
    (2)解方程:
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
    详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
    B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
    C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
    D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
    故选D.
    点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.
    2、C
    【解析】
    如图,设DE交AP于0,根据菱形的性质、翻折不变性-判断即可解决问题;
    【详解】
    解:如图,设DE交AP于O.
    ∵四边形ABCD是菱形
    ∴DA=DC=AB
    ∵A.P关于DE对称,
    ∴DE⊥AP,OA=OP
    ∴DA=DP
    ∴DP=CD,故①正确
    ∵AE=EB,AO=OP
    ∴OE//PB,
    ∴PB⊥PA
    ∴∠APB=90°
    ∴,故②正确
    若∠DCP=75°,则∠CDP=30°
    ∵LADC=60°
    ∴DP平分∠ADC,显然不符合题意,故③错误;
    ∵∠ADC=60°,DA=DP=DC
    ∴∠DAP=∠DPA,∠DCP=∠DPC,∠CPA=(360°-60°)=150°,故④正确.
    故选:C
    本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    3、A
    【解析】
    根据第二象限内点的横坐标是负数判断.
    【详解】
    解:∵点P(a,1)在第二象限,
    ∴a<0,
    ∴-1、0、1、1四个数中,a的值可以是-1.
    故选:A.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    4、B
    【解析】
    根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)”解答.
    【详解】
    根据中心对称的性质,得点P(2,-3)关于原点对称的点的坐标是(-2,3).
    故选B.
    关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.
    5、C
    【解析】
    首先连接AC,由四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,易得△ABC与△ACD是等边三角形,即可求得∠B=∠D=60°,继而求得∠BAD,∠BAE,∠DAF的度数,则可求得∠EAF的度数.
    【详解】
    解:连接AC,
    ∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,
    ∴AB=AC,AD=AC,
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,
    ∴AB=BC=AC,AC=CD=AD,
    ∴∠B=∠D=60°,
    ∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,
    ∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.
    故选C.
    此题考查了菱形的性质、线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
    6、C
    【解析】
    试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.
    答案为C
    考点:一次函数的图像
    7、C
    【解析】
    据一次函数图象与几何变换得到直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.
    【详解】
    直线y=1x向下平移1个单位得到的函数解析式为y=1x﹣1.
    故选:C.
    本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.
    8、B
    【解析】
    根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,可得答案.
    【详解】
    解:点(1,-6)关于原点对称的点的坐标是(-1,6);
    故选:B.
    本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    试题解析:∵D,F关于AE对称,所以△AED和△AEF全等,
    ∴AF=AD=BC=10,DE=EF,
    设EC=x,则DE=8-x.
    ∴EF=8-x,
    在Rt△ABF中,BF==6,
    ∴FC=BC-BF=1.
    在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,
    即:x2+12=(8-x)2,解得x=2.
    ∴EC的长为2cm.
    考点:1.勾股定理;2.翻折变换(折叠问题).
    10、
    【解析】
    根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.
    【详解】
    ∵a<0<b,
    ∴|a−b|=b−a.
    故答案为:.
    本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.
    11、(1,1)或(,)或(1,1)
    【解析】
    分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论
    【详解】
    ∵点A的坐标为(1,0),
    ∴OA=1.
    分三种情况考虑,如图所示.
    ①当OP1=AP1时,∵∠AOP1=45°,
    ∴△AOP1为等腰直角三角形.
    又∵OA=1,
    ∴点P1的坐标为(1,1);
    ②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.
    ∵OP1=OA=1,
    ∴OB=BP1=,
    ∴点P1的坐标为(,);
    ③当AO=AP3时,△OAP3为等腰直角三角形.
    ∵OA=1,
    ∴AP3=OA=1,
    ∴点P3的坐标为(1,1).
    综上所述:点P的坐标为(1,1)或(,)或(1,1).
    故答案为:(1,1)或(,)或(1,1).
    本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.
    12、1
    【解析】
    首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△AOD的面积.
    【详解】
    ∵四边形ABCD是矩形,∴OA=OC,AD∥BC,∴∠AEO=∠CFO.
    在△AOE和△COF中,∵,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影= S△COF +S△EOD =S△AOE+S△EOD =S△AOD.
    ∵S△AODBC•AD=1,∴S阴影=1.
    故答案为:1.
    本题考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的,是解决问题的关键.
    13、
    【解析】
    OC与AB相交于D,如图,利用作法得到OA=OB=AC=BC,则可判断四边形OACB为菱形,根据菱形的性质得到OC⊥AB,AD=BD=1,OD=CD,然后利用勾股定理计算出OD,从而得到OC的长.
    【详解】
    解:OC与AB相交于D,如图,
    由作法得OA=OB=AC=BC,
    ∴四边形OACB为菱形,
    ∴OC⊥AB,AD=BD=1,OD=CD,
    ∵四边形OACB的周长为8cm,
    ∴OB=2,
    在Rt△OBD中,OD=,
    ∴OC=2OD=2cm.
    故答案为.
    本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    先对原式中能因式分解的分子和分母进行因式分解,然后再对括号内进行运算,最后将除变为乘进行运算即可.
    【详解】
    解:原式=



    本题考查了分式的四则混合运算.其关键在于:①:先对能因式分解的分子和分母因式分解;②是灵活应用除以一个数就等于乘以它的倒数.
    15、(1)录取乙;(2)①30,②乙一定能被录用;甲不一定能被录用,见解析.
    【解析】
    (1)根据加权平均数的定义与性质即可求解判断;
    (2)①根据直方图即可求解;②根据直方图判断甲乙所在的分段,即可判断.
    【详解】
    解:(1)由题意得,
    (分)
    (分)

    ∴应该录取乙。
    (2)①30
    ②由频数分布直方图可知成绩最高一组分数段中有1人,而分,所以乙是第一名,一定被录取;在一组有5人,其中有2人被录用,分,可确定甲在本组中,但不能确定甲在本组中排第几名,所以甲不一定能被录用。
    此题主要考查统计调查的应用,解题的关键是熟知加权平均数的求解与性质.
    16、(1)图见解析,;(2)25
    【解析】
    (1)由题意直接根据图形平移的性质画出△A′B′C′,并写出各点坐标即可;
    (2)由题意可知AB扫过的部分是平行四边形,根据平行四边形的面积公式即可得出结论.
    【详解】
    解:(1)平移后的△A′B′C′如图所示,
    观察图象可知点A′、B′、C′的坐标分别为:.
    (2)由图象以及平移的性质可知线段AB扫过部分形状为平行四边形,且底为5,高为5,
    故线段AB扫过的面积为:.
    本题考查的是作图-平移变换,熟练掌握图形平移不变性的性质是解答此题的关键.
    17、(1)见解析 (2)是定值,8
    【解析】
    (1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,即可得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;
    (2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=8即可.
    【详解】
    (1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,
    ∵正方形ABCD,
    ∴∠BCD=90°,∠ECN=45°,
    ∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,
    ∴四边形EMCN为正方形,
    ∵四边形DEFG是矩形,
    ∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,
    ∴∠DEN=∠MEF,
    又∠DNE=∠FME=90°,
    在△DEN和△FEM中,
    ∴△DEN≌△FEM(ASA),
    ∴ED=EF,
    ∴矩形DEFG为正方形,
    (2)CE+CG的值为定值,理由如下:
    ∵矩形DEFG为正方形,
    ∴DE=DG,∠EDC+∠CDG=90°,
    ∵四边形ABCD是正方形,
    ∵AD=DC,∠ADE+∠EDC=90°,
    ∴∠ADE=∠CDG,
    在△ADE和△CDG中,
    ∴△ADE≌△CDG(SAS),
    ∴AE=CG,
    ∴AC=AE+CE=AB=×4=8,
    ∴CE+CG=8是定值.
    此题是四边形综合题,主要考查了正方形的性质,矩形的性质与判定,三角形的全等的性质和判定,勾股定理的综合运用,解本题的关键是作出辅助线,构造三角形全等,利用全等三角形的对应边相等得出结论.
    18、 (1)证明见解析;(2).
    【解析】
    (1)计算得到根的判别式大于0,即可证明方程有两个不相等的实数根;
    (2)利用根与系数的关系可直接求出方程的另一个根.
    【详解】
    解:(1)∵△=k2+8>0,
    ∴不论k取何值,该方程都有两个不相等的实数根;
    (2)设方程的另一个根为x1,
    则,
    解得:,
    ∴方程的另一个根为.
    本题是对根的判别式和根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    从n边形的一个顶点可引的对角线条数应为:n-3,因为与它相邻的两个顶点和它本身的一个顶点均不能和其连接构成对角线。再用外角度数除几个角即可解答
    【详解】
    ∵经过多边形的一个顶点有5条对角线,
    ∴这个多边形有5+3=8条边,
    ∴此正多边形的每个外角度数为360°÷8=1°,
    故答案为:1.
    此题考查正多边形的性质和外角,解题关键在于求出是几边形
    20、y=1x±1.
    【解析】
    根据平行直线的解析式的k值相等可得k=1,然后求出直线与坐标轴的交点,再利用三角形的面积公式列式计算即可求得直线解析式.
    【详解】
    解:∵直线y=kx+b与直线y=1x-3平行,
    ∴k=1,即y=1x+b
    分别令x=0和y=0,得与y,x轴交点分别为(0,b)和(-,0)
    ∴S=×|b|×|-|=1,∴b=±1
    ∴y=1x±1.
    故答案为:y=1x±1.
    本题考查两直线相交或平行问题,以及三角形面积问题,熟记平行直线的解析式的k值相等是解题的关键.
    21、x>1
    【解析】
    利用函数图象,写出直线在直线下方所对应的自变量的范围即可.
    【详解】
    解:根据图象得,当x>1时,kx+b<x+a.
    故答案为x>1.
    本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线在直线下方所对应的所有的点的横坐标所构成的集合.数型结合是解题的关键.
    22、18
    【解析】
    根据角平分线的定义、平行线的性质,及等角对等边可知OM=BM,ON=CN,则△AMN的周长=AB+AC可求.
    【详解】
    ∵∠ABC和∠ACB的角平分线交于点O,
    ∴∠ABO=∠CBO,∠ACO=∠BCO,
    ∵BC∥MN,
    ∴∠BOM=∠CBO,∠CON=∠BCO,
    ∴∠BOM=∠ABO,∠CON=∠ACO,
    ∴OM=BM,ON=CN,
    ∴△AMN的周长=AM+AN+MN=AM+OM+AN+NC=AB+AC=18cm.
    故答案为:18.
    此题考查角平分线的定义,平行线分线段成比例,解题关键在于得出OM=BM,ON=CN.
    23、30°
    【解析】
    过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.
    【详解】
    解:过A作AE⊥BC于点E,如图所示:
    由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,
    得到AE=AB,又△ABE为直角三角形,
    ∴∠ABE=30°,
    则平行四边形中最小的内角为30°.
    故答案为:30°
    本题考查了平行四边形的面积公式及性质,根据题意求得AE=AB是解决问题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、﹣1≤x<2
    【解析】
    首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.
    【详解】
    解不等式①,得:x<2,
    解不等式②,得:x≥﹣1,
    所以不等式组的解集为﹣1≤x<2,
    将不等式组的解集表示在数轴上如下:
    此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    25、
    【解析】
    先利用平方差公式对进行因式分解,然后把除法运算转化为乘法运算,能约分的要约分,最后进行减法运算即可.
    【详解】
    原式=
    =
    =
    本题主要考查分式的混合运算,掌握分式混合运算顺序和法则是解题的关键.
    26、(1);(2)是原方程的解.
    【解析】
    (1)先分别解两个不等式,再求其解集的公共部分即可;
    (2)先去分母化成整式方程,再检验,即可判断整式方程的解是否为原分式方程的解.
    【详解】
    (1)
    由①得:
    由②得:
    不等式组的解集是:
    (2)
    去分母得:
    经检验是原方程的解
    本题分别考查了一元一次不等式组的解集的求法及分式方程的求解问题,两题均为基础题型.
    题号





    总分
    得分

    相关试卷

    2024-2025学年哈尔滨松北区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年哈尔滨松北区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东省江门蓬江区五校联考数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年广东省江门蓬江区五校联考数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    黑龙江省哈尔滨松北区四校联考2023-2024学年九上数学期末学业水平测试模拟试题含答案:

    这是一份黑龙江省哈尔滨松北区四校联考2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了若,则的值等于,点A所在的象限是,抛物线y=﹣2等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map