2024年江西省彭泽县湖西中学九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开这是一份2024年江西省彭泽县湖西中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,平行四边形中,的平分线交于,,,则的长( )
A.1B.1.5C.2D.3
2、(4分)方程=1的解的情况为( )
A.x=﹣B.x=﹣3C.x=1D.原分式方程无解
3、(4分)下列函数中,自变量x的取值范围是x≥2的是()
A.B.
C.D.
4、(4分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为( )
A.﹣2B.1C.2D.0
5、(4分)某次知识竞赛共有道题,每一题答对得分,答错或不答扣分,小亮得分要超过分,他至少要答对多少道题?如果设小亮答对了道题,根据题意列式得( )
A.B.
C.D.
6、(4分)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是( )
A.B.C.D.
7、(4分)以下四个命题正确的是
A.平行四边形的四条边相等
B.矩形的对角线相等且互相垂直平分
C.菱形的对角线相等
D.一组对边平行且相等的四边形是平行四边形
8、(4分)已知,则的大小关系是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为______.
10、(4分)如图的三边长分别为30,48,50,以它的三边中点为顶点组成第一个新三角形,再以第一个新三角形三边中点为顶点组成第二个新三角形,如此继续,则第6个新三角形的周长为______.
11、(4分)一次函数的图像在轴上的截距是__________.
12、(4分)方程的两个根是和,则的值为____.
13、(4分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)(问题情境)
如图,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
(探究展示)
(1)直接写出AM、AD、MC三条线段的数量关系: ;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
(拓展延伸)
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.
15、(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
(1)求证:方程有两个不相等的实数根;
(2)若方程有一个根是5,求k的值.
16、(8分)已知:如图,在中,,cm,cm.直线 从点出发,以2 cm/s的速度向点方向运动,并始终与平行,与线段交于点.同时,点从点出发,以1cm/s的速度沿向点运动,设运动时间为(s) () .
(1)当为何值时,四边形是矩形?
(2)当面积是的面积的5倍时,求出的值;
17、(10分)如图,在直角坐标平面内,直线y=﹣x﹣4与x轴、y轴分别交于点A、B,点C在x轴正半轴上,且满足OC=OB.
(1)求线段AB的长及点C的坐标;
(2)设线段BC的中点为E,如果梯形AECD的顶点D在y轴上,CE是底边,求点D的坐标和梯形AECD的面积.
18、(10分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写 的英语水平测试,他们各项的成绩(百分制)如下:
(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?
(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照 3∶4∶2∶1 的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看, 应该录取谁?
(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照 1∶2∶3∶4 的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看, 应该录取谁?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若实数a、b满足,则=_____.
20、(4分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.
21、(4分)根据如图所示的程序,当输入x=3时,输出的结果y=________.
22、(4分)计算:π0-()-1=______.
23、(4分)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点),使它们将正方形的面积四等分:
问题解决
(3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.
25、(10分)某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
设购买银杏树苗x棵,到两家购买所需费用分别为y甲元、y乙元
(1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为 元,若都在乙家购买所需费用为 元;
(2)当x>1000时,分别求出y甲、y乙与x之间的函数关系式;
(3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么?
26、(12分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF的中点,连接DG.
(1)求证:BC=DF;(2)连接BD,求BD∶DG的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据平行四边形的性质及为角平分线可知:,又有,可求的长.
【详解】
根据平行四边形的对边相等,得:,.
根据平行四边形的对边平行,得:,
,
又,
.
,
.
故选:.
本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
2、D
【解析】
方程两边同时乘以x(x-1)化为整式方程,解整式方程后进行验根即可得.
【详解】
方程两边同时乘以x(x-1),得
x2-1=x(x-1),
解得:x=1,
检验:当x=1时,x(x-1)=0,
所以原分式方程无解,
故选D.
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
3、D
【解析】
根据分式与二次根式有意义的条件依次分析四个选项,比较哪个选项符合条件,可得答案.
【详解】
解:A、y=有意义,∴2-x≥0,解得x≤2;
B、y=有意义,∴x-2>0,解得x>2;
C、y=有意义,∴4-x2≥0,解得-2≤x≤2;
D、y=有意义,∴x+2≥0且x-2≥0,解得x≥2;
分析可得D符合条件;
故选:D.
本题考查函数自变量的取值问题,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
4、D
【解析】
分析:根据根与系数的关系可得出x1x2=1,此题得解.
详解:∵一元二次方程x2﹣2x=1的两根分别为x1和x2,
∴x1x2=1.
故选D.
点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.
5、D
【解析】
小亮答对题的得分:,小亮答错题的得分:,不等关系:小亮得分要超过分.
【详解】
根据题意,得
.
故选:.
此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.
6、B
【解析】
如图,过点E作EM⊥BC于点M,EN⊥AB于点N,
∵点E是正方形的对称中心,∴EN=EM,EMBN是正方形.
由旋转的性质可得∠NEK=∠MEL,
在Rt△ENK和Rt△EML中,
∠NEK=∠MEL,EN=EM,∠ENK=∠EML,
∴△ENK≌△ENL(ASA).
∴阴影部分的面积始终等于正方形面积的,即它们重叠部分的面积S不因旋转的角度θ的改变而改变.故选B.
7、D
【解析】
根据平行四边形的性质与判定、矩形的性质和菱形的性质判断即可.
【详解】
解:A、菱形的四条边相等,错误;
B、矩形的对角线相等且平分,错误;
C、菱形的对角线垂直,错误;
D、一组对边平行且相等的四边形是平行四边形,正确.
故选D.
本题考查了命题与定理的知识,解题的关键是了解平行四边形的性质、矩形的性质和菱形的性质,难度一般.
8、B
【解析】
先根据幂的运算法则进行计算,再比较实数的大小即可.
【详解】
,
,
,
.
故选:.
此题主要考查幂的运算,准确进行计算是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF即可.
【详解】
解:四边形ABCD是矩形,
∴∠A=90°, AB=6,AD=BC=8,
∴BD= =10,
又∵EF是BD的垂直平分线,
∴OB=OD=5,∠BOF=90°,
又∵∠C=90°,
∴△BOF∽△BCD,
∴ ,即:,解得:BF=
本题考查的是矩形的性质、线段垂直平分线的性质、相似三角形的性质和判定以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.
10、1
【解析】
根据三角形中位线定理依次可求得第二个三角形和第三个三角形的周长,可找出规律,进而可求得第6个三角形的周长.
【详解】
如图,、F分别为AB、AC的中点,
,同理可得,,
,
即的周长的周长,
第二个三角形的周长是原三角形周长的,
同理可得的周长的周长的周长的周长,
第三个三角形的周长是原三角形周长的,
第六个三角形的周长是原三角形周长的,
原三角形的三边长为30,48,50,
原三角形的周长为118,
第一个新三角形的周长为64,
第六个三角形的周长,
故答案为:1.
本题考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.
11、1
【解析】
求得一次函数与y轴的交点的纵坐标即为一次函数y=x+1的图象在y轴上的截距.
【详解】
解:令x=0,得y=1;
故答案为:1.
本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.
12、
【解析】
根据韦达定理求解即可.
【详解】
∵方程的两个根是和
∴由韦达定理得
故答案为:.
本题考查了一元二次方程根的问题,掌握韦达定理是解题的关键.
13、
【解析】
作AM⊥BC于E,由角平分线的性质得出,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN−EN=x,再由勾股定理得出方程,解方程即可得出结果.
【详解】
解:作AM⊥BC于E,如图所示:
∵CD平分∠ACB,
∴,
设AC=2x,则BC=3x,
∵MN是BC的垂直平分线,
∴MN⊥BC,BN=CN=x,
∴MN∥AE,
∴,
∴NE=x,
∴BE=BN+EN=x,CE=CN−EN=x,
由勾股定理得:AE2=AB2−BE2=AC2−CE2,
即52−(x)2=(2x)2−(x)2,
解得:x=,
∴AC=2x=;
故答案为.
本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)成立.证明见解析;(3) (1)成立;(2)不成立
【解析】
(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.
(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.
(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.
【详解】
解:(1)证明:延长AE、BC交于点N,如图1(1),
∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.
∴∠ENC=∠MAE.∴MA=MN.
∴△ADE≌△NCE(AAS)
∴AD=NC.∴MA=MN=NC+MC=AD+MC.
(2)AM=DE+BM成立.
证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.
∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.
∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.
∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.
∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.
∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.
(3)①结论AM=AD+MC仍然成立.
证明:延长AE、BC交于点P,如图2(1),
∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.
∴∠EPC=∠MAE.∴MA=MP.
∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.
②结论AM=DE+BM不成立.
证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.
∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,
∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.
∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM
=∠BAM+∠QAB ∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.
∴△ABQ≌△ADE(AAS)∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.
∴AM=DE+BM不成立.
本题是四边形综合题,主要考查了正方形和矩形的性质,全等三角形的性质和判定,等腰三角形的判定,平行线的性质,角平分线的定义等,考查了基本的模型构造:平行和中点构造全等三角形.有较强的综合性.
15、(1)证明见解析;(2)k=4或k=2.
【解析】
(1)根据根的判别式为1,得出方程有两个不相等的实数根;(2)将x=2代入方程得出关于k的一元二次方程,从而得出k的值.
【详解】
(1)∵△=
=
=,
∴方程有两个不相等的实数根;
(2)∵方程有一个根为2,
∴,
,
∴,.
本题考查了一元二次方程根的判别式,因式分解法解一元二次方程,熟练掌握相关知识是解题的关键.
16、(1);(2)。
【解析】
(1)首先根据勾股定理计算AB的长,再根据相似比例表示PE的长度,再结合矩形的性质即可求得t的值.
(2)根据面积相等列出方程,求解即可.
【详解】
解:(1)在中,,
,当时,四边形PECF是矩形,
解得
(2)由题意
整理得,解得
,面积是的面积的5倍。
本题主要考查矩形的动点问题,这是近几年的考试热点,必须熟练掌握.
17、(1)A(﹣3,0),B(0,﹣4),C(2,0);(2)S梯形AECD=1.
【解析】
(1)令x=0求出点B的坐标,令y=0求出点A的坐标,根据勾股定理求出AB的长,然后根据OC=OB即可求出点C的坐标;
(2)首先证明梯形AECD是直角梯形,由△AOD∽△COB,求出OD的长,再由勾股定理求出BC、AD、AE的长即可解决问题;
【详解】
(1)令x=0,得到y=﹣4,
∴B(0,﹣4),
令y=0,得到x=﹣3,
∴A(﹣3,0),
∴AB==5,
∵OC=OB,点C中x轴的正半轴上,
∴C(2,0)
(2)∵AC=AB=5,EC=BE,
∴AE⊥BC,
∵CE是梯形AECD的底,
∴AD∥CE,
∴△AOD∽△COB,
∴,
∴,
∴OD=6,
∴D(6,0),
∵BC=2,AD=3,AE=,
∴S梯形AECD×AE=1.
本题考查一次函数与坐标轴的交点、相似三角形的判定与性质、勾股定理、梯形的性质等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.
18、(1) 应该录取丙;(2) 应该录取甲;(3)应该录取乙
【解析】
(1)分别算出甲乙丙的平均数,比较即可;
(2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;
(3) 由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.
【详解】
(1)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵80.5>80.25>80
∴应该录取丙
(2)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵82.1>81>79.1
∴应该录取甲
(3)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵81.6>80.1>78.8
∴应该录取乙.
本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣
【解析】
根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.
20、1
【解析】
∵骑车的学生所占的百分比是×100%=35%,
∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
故答案为1.
21、1
【解析】
根据自变量与函数值的对应关系,可得相应的函数值.
【详解】
当x=3时,y=﹣3+5=1.
故答案为:1.
本题考查了函数值,将自变量的值代入相应的函数关系式是解题的关键.
22、-1
【解析】
直接利用零指数幂和负整数指数幂的运算法则进行计算即可.
【详解】
原式=1-3=-1.
故答案为:-1.
本题主要考查实数的运算,掌握零指数幂和负整数指数幂的运算法则是解题的关键.
23、 ;
【解析】
树高等于AC+BC,在直角△ABC中,用勾股定理求出BC即可.
【详解】
由勾股定理得,BC=,所以AC+BC=1+.
故答案为().
本题考查了勾股定理的实际应用,解题的关键是在实际问题的图形中得到直角三角形.
二、解答题(本大题共3个小题,共30分)
24、(1)答案见解析;(2)答案见解析;(3)存在,BQ=b
【解析】
(1)画出互相垂直的两直径即可;
(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,根据三角形的面积公式和正方形的性质求出即可;
(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.
【详解】
解:(1)如图1所示,
(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,
则直线EF、OM将正方形的面积四等分,
理由是:∵点O是正方形ABCD的对称中心,
∴AP=CQ,EB=DF,
在△AOP和△EOB中
∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,
∴∠AOP=∠BOE,
∵OA=OB,∠OAP=∠EBO=45°,
∴△AOP≌△EOB,
∴AP=BE=DF=CQ,
设O到正方形ABCD一边的距离是d,
则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,
∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,
直线EF、OM将正方形ABCD面积四等份;
(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,
理由是:如图③,连接BP并延长交CD的延长线于点E,
∵AB∥CD,
∴∠A=∠EDP,
∵在△ABP和△DEP中
∴△ABP≌△DEP(ASA),
∴BP=EP,
连接CP,
∵△BPC的边BP和△EPC的边EP上的高相等,
又∵BP=EP,
∴S△BPC=S△EPC,
作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,
由三角形面积公式得:PF=PG,
在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP
∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP
即:S四边形ABQP=S四边形CDPQ,
∵BC=AB+CD=a+b,
∴BQ=b,
∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分.
本题考查了正方形性质,菱形性质,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.
25、 (1)610000; 1;(2)当x>1000时,y甲=700x+50000,y乙=600x+200000,x为正整数;(3)当0≤x≤500时或x=1500时,到两家购买所需费用一样;当500<x<1500时,到甲家购买合算;当x>1500时,到乙家购买合算.
【解析】
(1)、(2)依据表格提供的数据,然后结合公式总价单价数量进行计算即可;
(3)分为,,三种情况进行讨论即可.
【详解】
解:(1)甲家购买所要费用;
都在乙家购买所需费用.
故答案为:610000;1.
(2)当时,,
,为正整数,
(3)当时,到两家购买所需费用一样;
当时,甲家有优惠而乙家无优惠,所以到甲家购买合算;
又.
当时,,解得,当时,到两家购买所需费用一样;
当时,,解得,当时,到甲家购买合算;
当时,,解得,当时,到乙家购买合算.
综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.
本题主要考查的是一次函数的应用,明确题目中涉及的数量关系是解题的关键.
26、(1)详见解析;(2)
【解析】
(1)根据矩形的性质解答即可;
(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.
【详解】
证明:(1)∵四边形ABCD为矩形,
∴AD=BC,∠BAD=∠ADC=90°,
∵AF平分∠BAD,
∴∠DAF=45°,
∴AD=DF,
∴BC=DF;
(2)连接CG,BG,
∵点G为EF的中点,
∴GF=CG,
∴∠F=∠BCG=45°,
在△BCG与△DFG中,
∴△BCG≌△DFG(SAS),
∴BG=DG,∠CBG=∠FDG,
∴△BDG为等腰直角三角形,
∴BD=DG,
∴BD:DG=:1.
此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.
题号
一
二
三
四
五
总分
得分
批阅人
应试者
听
说
读
写
甲
82
86
78
75
乙
73
80
85
82
丙
81
82
80
79
甲
乙
购树苗数量
销售单价
购树苗数量
销售单价
不超过500棵时
800元/棵
不超过1000棵时
800元/棵
超过500棵的部分
700元/棵
超过1000棵的部分
600元/棵
相关试卷
这是一份2024-2025学年江西省彭泽县九上数学开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省彭泽县湖西中学2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,反比例函数,根据下面表格中的对应值等内容,欢迎下载使用。
这是一份江西省彭泽县湖西中学2023-2024学年八上数学期末学业水平测试模拟试题含答案,共7页。