还剩22页未读,
继续阅读
江西省九江市彭泽县2025届数学九年级第一学期开学综合测试模拟试题【含答案】
展开这是一份江西省九江市彭泽县2025届数学九年级第一学期开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:①;②;③方程有两个不相等的实数根;④;⑤若点在该抛物线上,则,其中正确的个数有( )
A.1个B.2个C.3个D.4个
2、(4分)关于一个四边形是不是正方形,有如下条件①对角线互相垂直且相等的平行四边形;②对角线互相垂直的矩形;③对角线相等的菱形;④对角线互相垂直平分且相等的四边形;以上条件,能判定正方形的是( )
A.①②③B.②③④C.①③④D.①②③④
3、(4分)下列等式从左到右的变形是因式分解的是()
A.
B.
C.
D.
4、(4分)下列说法中,正确的是( )
A.有两边相等的平行四边形是菱形
B.两条对角线互相垂直平分的四边形是菱形
C.两条对角线相等且互相平分的四边形是菱形
D.四个角相等的四边形是菱形
5、(4分)下列各式不是最简二次根式的是( )
A. B. C. D.
6、(4分)若分式的值为0,则的值是( )
A.B.C.0D.3
7、(4分)下列交通标志既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
8、(4分)计算:结果在( )
A.2.5与3之间B.3与3.5之间C.3.5与4之间D.4与4.5之间
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知线段a,b,c能组成直角三角形,若a=3,b=4,则c=_____.
10、(4分)已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
11、(4分)方程的解为_____.
12、(4分)计算:(−)2=________;=_________.
13、(4分)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)定义:我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:
①如图1,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.
②如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(3)问题解决:
如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG,GE,已知AC=2,AB=1.求GE的长度.
15、(8分)如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.
(1)求证:DF=FE;
(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长.
16、(8分)阅读下面材料:数学课上,老师出示了这祥一个问题:
如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:
小柏:“通过观察和度量,发现点H是线段EF的中点”。
小吉:“∠BFE=75°,说明图形中隐含着特殊角”;
小亮:“通过观察和度量,发现CO⊥BD”;
小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;
小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;
老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.
请回答:(1)证明FH=EH;
(2)求的值;
(3)若AB=4.MH=,则GE的长度为_____________.
17、(10分)如图,已知各顶点的坐标分别为,,.
(1)画出以点为旋转中心,按逆时针方向旋转后得到的;
(2)将先向右平移4个单位长度,再向上平移5个单位长度,得到.
①在图中画出;
②如果将看成是由经过一次平移得到的,请指出这一平移的平移方向和平移距离.
18、(10分)为了解某校九年级学生立定跳远水平,随机抽取该年级名学生进行测试,并把测试成绩(单位:) 绘制成不完整的频数分布表和频数分布直方图.
请根据图表中所提供的信息,完成下列问题
(1)表中= ,= ;
(2)请把频数分布直方图补充完整;
(3)跳远成绩大于等于为优秀,若该校九年级共有名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)李明的座位在第5排第4列,简记为(5,4),张扬的座位在第3排第2列,简记为,若周伟的座位在李明的前面相距2排,同时在他的右边相距2列,则周伟的座位可简记为___________________.
20、(4分)若一个多边形的内角和与外角和之和是1800°,则此多边形是___边形.
21、(4分)已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.
22、(4分)某种感冒病毒的直径是0.000 000 12米,用科学记数法表示为 米.
23、(4分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC的长是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:
(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;
(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?
25、(10分)如图,直线与反比例函数的图象交于、两点,与轴交于点,已知点的坐标为.
(1)求反比例函数的解析式;
(2)若点是反比例函数图象上一点,过点作轴于点,延长交直线于点,求的面积.
26、(12分)我们定义:在四边形中,一条边上的两个角称为邻角.如果一条边上的邻角相等,且这条边对边上的邻角也相等,则把这样的四边形叫做“完美四边形”.
初步运用:在“平行四边形、矩形和菱形”这三种特殊的四边形中,一定是“完美四边形”的是______;
问题探究:在完美四边形中,,,,,求该完美四边形的周长与面积;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.
【详解】
如图,∵与轴的一个交点坐标为,抛物线的对称轴是,
实验求出二次函数与x轴的另一个交点为(-2,0)
故可补全图像如下,
由图可知a<0,c>0,对称轴x=1,故b>0,
∴,①错误,
②对称轴x=1,故x=-,∴,正确;
③如图,作y=2图像,与函数有两个交点,∴方程有两个不相等的实数根,正确;④∵x=-2时,y=0,即,正确;⑤∵抛物线的对称轴为x=1,故点在该抛物线上,则,正确;
故选D
此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.
2、D
【解析】
利用正方形的判定方法逐一分析判断得出答案即可.
【详解】
解:①对角线互相垂直且相等的平行四边形是正方形,故正确;
②对角线互相垂直的矩形是正方形,故正确;
③对角线相等的菱形是正方形,故正确;
④对角线互相垂直平分且相等的四边形是正方形,故正确;
故选:D.
本题主要考查正方形的判定方法,掌握正方形的判定方法是解题的关键.
3、C
【解析】
直接利用因式分解的定义分析得出答案.
【详解】
解:A. ,是单项式乘以单项式,故此选项错误;
B. ,从左到右的变形是整式的乘法,故此选项错误;
C. ,从左到右的变形是因式分解,故此选项正确;
D. ,没有分解成几个整式的积的形式,不是因式分解,故此项错误。
故选:C
本题主要考查了因式分解的意义,正确把握因式分解的意义是解题关键.
4、B
【解析】
利用菱形的判定定理及性质即可求解.
【详解】
解:A. 有两边相等的平行四边形不是菱形,此选项错误;
B. 两条对角线互相垂直平分的四边形是菱形,此选项正确;
C. 两条对角线相等且互相平分的四边形是矩形,此选项错误;
D. 四个角相等的四边形是矩形,此选项错误.
故选:B.
本题考查的知识点是菱形的判定定理、平行四边形的性质、线段垂直平分线的性质,掌握菱形的判定定理是解此题的关键.
5、D
【解析】
试题分析:最简二次根式的被开方数不能含有能开方的数字,不能含有分数,不能有偶数次幂.
考点:最简二次根式
6、D
【解析】
根据分式为零的条件,即可完成解答.
【详解】
解:由分式为零的条件得,x-3=0,x+2≠0,解得x=3;
故答案为D.
本题考查了分式为0的条件,即分子为零,分母不为0.
7、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、不是轴对称图形,也不是中心对称图形,故此选项错误;
B、不是轴对称图形,也不是中心对称图形,故此选项错误;
C、是轴对称图形,也是中心对称图形,故此选项正确;
D、不是轴对称图形,也不是中心对称图形,故此选项错误;
故选C.
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8、B
【解析】
原式化简后,估算即可得到结果.
【详解】
解:原式=
∵64<65<72.25,,
∴8<<8.5
∴3<<3.5
故选:B.
此题考查了估算无理数的大小以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5或
【解析】
由于没有指明斜边与直角边,因此要分4为斜边与4为直角边两种情况来求解.
【详解】
分两种情况,当4为直角边时,c为斜边,c==5;
当长4的边为斜边时,c==,
故答案为:5或.
本题利用了勾股定理求解,注意要讨论c为斜边或是直角边的情况.
10、-2
【解析】
试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
考点:一次函数图象与系数的关系.
11、1
【解析】
根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.
【详解】
解:两边平方得:2x+1=x2
∴x2﹣2x﹣1=0,
解方程得:x1=1,x2=﹣1,
检验:当x1=1时,方程的左边=右边,所以x1=1为原方程的解,
当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.
故答案为1.
此题考查无理方程的解,解题关键在于掌握运算法则
12、5 π-1
【解析】
根据二次根式的性质计算即可.
【详解】
解:.
故答案为:5,π-1.
本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.
13、1.
【解析】
根据题意确定点A/的纵坐标,根据点A/落在直线y=-x上,求出点A/的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.
解:由题意可知,点A移动到点A/位置时,纵坐标不变,
∴点A/的纵坐标为6,
-x=6,解得x=-1,
∴△OAB沿x轴向左平移得到△O/A/B/位置,移动了1个单位,
∴点B与其对应点B/间的距离为1.
故答案为1.
“点睛”本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的距离是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)四边形ABCD是垂美四边形,证明见解析 (2)①,证明见解析;②四边形FMAN是矩形,证明见解析 (3)
【解析】
(1)根据垂直平分线的判定定理证明即可;
(2)①根据垂直的定义和勾股定理解答即可;②根据在Rt△ABC中,点F为斜边BC的中点,可得,再根据△ABD和△ACE是等腰三角形,可得,再由(1)可得,,从而判定四边形FMAN是矩形;
(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.
【详解】
(1)四边形ABCD是垂美四边形
连接AC、BD
∵
∴点A在线段BD的垂直平分线上
∵
∴点C在线段BD的垂直平分线上
∴直线AC是线段BD的垂直平分线
∴
∴四边形ABCD是垂美四边形;
(2)①,理由如下
如图,已知四边形ABCD中,,垂足为E
由勾股定理得
②四边形FMAN是矩形,理由如下
如图,连接AF
∵在Rt△ABC中,点F为斜边BC的中点
∵△ABD和△ACE是等腰三角形
由(1)可得,
∵
∴四边形FMAN是矩形;
(3)连接CG、BE,
,即
在△AGB和△ACE中
∵
,即
∴四边形CGEB是垂美四边形
由(2)得
.
本题考查了垂美四边形的问题,掌握垂直平分线的判定定理、垂直的定义、勾股定理、垂美四边形的性质、全等三角形的性质以及判定定理是解题的关键.
15、(1)证明见解析;(2)
【解析】
分析:(1)可过点C延长DC交BE于M,可得C,F分别为DM,DE的中点;
(2)在直角三角形ADC中利用勾股定理求解即可.
详解:(1)证明:延长DC交BE于点M,
∵BE∥AC,AB∥DC,
∴四边形ABMC是平行四边形,
∴CM=AB=DC,C为DM的中点,BE∥AC,
则CF为△DME的中位线,
DF=FE;
(2)由(1)得CF是△DME的中位线,故ME=2CF,
又∵AC=2CF,四边形ABMC是平行四边形,
∴AC=ME,
∴BE=2BM=2ME=2AC,
又∵AC⊥DC,
∴在Rt△ADC中利用勾股定理得AC= ,
∴BE=.
点睛:本题结合三角形的有关知识综合考查了平行四边形的性质,解题关键是理解中位线的定义,会用勾股定理求解直角三角形.
16、(1)见解析;(2) ;(3)
【解析】
(1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;
(2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;
(3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.
【详解】
(1)如图1,
连接DE,DF
∵正方形ABCD
∴AD=CD=CB=AB
∠A=∠ADC=∠BCD=∠ABC=90°
∴∠DCE=∠A=90°
∴在ΔFAD和ΔECD中
∴ΔDAF≌ΔDCE(SAS)
∴DF=DE
∵DH⊥EF
∴FH=EH
(2)如图2,连接BH,
∵ΔFAD≌ΔECD
∴∠ADF=∠CDE
∵∠ADC=90°=∠ADF+∠FDC
∴∠EDC+∠FDC=90°
∴∠FDE=90°
∴DH=EF=EH=FH
∵∠FBC=90°
∴BH=EF=EH=FH
∴BH=DH
∴在ΔBHC和ΔDHC中
∴ΔBHC≌ΔDHC(SSS)
∴∠BCH=∠DCH
∴OC⊥BD
∴∠HOB=90°
∵BH=FH,∠BFE =75°
∴∠FBH=∠BFH=75°
∵正方形ABCD
∴∠ABD=45°,∠HBO=30°
∴OH=BH
∴;
(3)解:如图3,连接OA,作MK⊥OA于K.
由(2)可知:A,O,C共线,
∴∠MAK=45°,
∵AM=MB=2,
∵CG∥AB,
由△EHG∽△BCG,可得
本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
17、(l)见解析;(2)①见解析;②平移方向为由到的方向,平移距离是个单位长度
【解析】
(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到;
(2)①利用点平移的规律写出A2、B2、C2的坐标,然后描点即可;
②根据平移的规律解答即可.
【详解】
解:(l)如图所示.
(2)①如图所示:
②连接,.
平移方向为由到的方向,平移距离是个单位长度.
本题考查了作图-平移及旋转:根据平移和旋转的性质,找到对应点,顺次连接得出平移和旋转后的图形.
18、(1)8,20 (2)见解析 (3)330人
【解析】
(1)根据频数分布直方图可知a的值,然后根据题目中随机抽取该年级50名学生进行测试,可以求得b的值;
(2)根据(1)中b的值可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据,可以算出该年级学生立定跳远成绩优秀的学生有多少人.
【详解】
(1)由频数分布直方图可知,a=8,
b=50-8-12-10=20,
故答案为:8,20;
(2)由(1)知,b=20,
补全的频数分布直方图如图所示;
(3)550×=330(人),
答:该年级学生立定跳远成绩优秀的学生有330人.
本题考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(3,6)
【解析】
先求出周伟所在的排数与列数,再根据第一个数表示排数,第二个数表示列数解答.
【详解】
解:∵周伟的座位在李明的前面相距2排,同时在他的右边相距2列,
∴周伟在第3排第6列,
∴周伟的座位可简记为(3,6).
故答案为:(3,6).
本题考查坐标确定位置,读懂题目信息,理解有序数对的两个数的实际意义是解题关键.
20、十
【解析】
试题分析:设所求n边形边数为n,先根据多边形的外角和为360度得到多边形的内角和,再根据多边形的内角和公式,即可得到结果.
由题意得多边形的内角和为1800°-360°=1440°,
设所求n边形边数为n,则180°(n-2)=1440°,解得n=10,
则此多边形是十边形.
考点:本题考查的是多边形的内角和公式,多边形的外角和
点评:解答本题的关键是熟练掌握多边形的内角和公式:180°(n-2),任意多边形的外角和均是360度,与边数无关.
21、2
【解析】
设y=k(x+1),把x=1,y=2代入,求的k,确定x,y的关系式,然后把x=-1,代入解析式求对应的函数值即可.
【详解】
解:∵y与x+1成正比例,
∴设y=k(x+1),
∵x=1时,y=2,
∴2=k×2,即k=1,
所以y=x+1.
则当x=-1时,y=-1+1=2.
故答案为2.
本题考查了正比例函数关系式为:y=kx(k≠2)),只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.
22、
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.0.00000012=.
23、
【解析】
在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,则斜边AB=2CD=1,则根据勾股定理即可求出BC的长.
【详解】
解:在Rt△ABC中,CD是斜边AB上的中线,CD=2,
∴AB=2CD=1.
∴BC===.
故答案为:.
本题主要考查直角三角形中斜边上的中线的性质及勾股定理,掌握直角三角形中斜边上的中线是斜边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)432.
【解析】
(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;
(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.
【详解】
解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,
所以课外阅读量的众数是3本,
则m%=×100%=32%,即m=32,
补全图形如下:
(2)估计该校600名学生中能完成此目标的有600×=432(人).
此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、(1);(2).
【解析】
(1)将点A的坐标代入直线解析式求出m的值,再将点A的坐标代入反比例函数解析式可求出k的值,继而得出反比例函数关系式;
(2)将点P的纵坐标代入反比例函数解析式可求出点P的横坐标,点P的横坐标和点F的横坐标相等,将点F的横坐标代入直线解析式可求出点F的纵坐标,将点的坐标转换为线段的长度后,即可计算△CEF的面积.
【详解】
(1)将点A的坐标代入y=x﹣1,可得:m=﹣1﹣1=﹣2,将点A(﹣1,﹣2)代入反比例函数y,可得:k=﹣1×(﹣2)=2,故反比例函数解析式为:y.
(2)将点P的纵坐标y=﹣1代入反比例函数关系式可得:x=﹣2,将点F的横坐标x=﹣2代入直线解析式可得:y=﹣3,∴EF=3,CE=OE+OC=2+1=3,∴S△CEFCE×EF.
本题考查了一次函数与反比例函数的交点问题,解答本题的关键是确定点A的坐标,要求同学们能结合图象及直角坐标系,将点的坐标转化为线段的长度.
26、①矩形②
【解析】
(1)根据完美四边形的定义即可判断;
(2)根据题意画出图形,根据等腰三角形和直角三角形的性质即可求解.
【详解】
解:(1)初步运用:矩形
(2)问题探究:根据完美四边形的定义,结合题意可画出图形如下:
∵,,
∴,
∵,∴,.
∵,
∴,
∴.
在等腰中,过点作于点.
∴,由勾股定理可得:,,
∴完美四边形的周长为15.
∵,.
∴完美四边形的面积为.
此题主要考查四边形综合,解题的关键是熟知等腰梯形.等腰三角形及直角三角形的性质.
题号
一
二
三
四
五
总分
得分
相关试卷
江西省九江市2024年数学九年级第一学期开学复习检测模拟试题【含答案】:
这是一份江西省九江市2024年数学九年级第一学期开学复习检测模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江西省赣州市会昌县2024年九年级数学第一学期开学综合测试模拟试题【含答案】:
这是一份江西省赣州市会昌县2024年九年级数学第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江西省九江市同文中学数学九上开学综合测试试题【含答案】:
这是一份2025届江西省九江市同文中学数学九上开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。