2024年江北新区联盟九上数学开学统考模拟试题【含答案】
展开
这是一份2024年江北新区联盟九上数学开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)二次根式中的x的取值范围是( )
A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2
2、(4分)如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是( )
A.四边形ABCD与四边形AEFG是相似图形
B.AD与AE的比是2:3
C.四边形ABCD与四边形AEFG的周长比是2:3
D.四边形ABCD与四边形AEFG的面积比是4:9
3、(4分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5B.6C.7D.8
4、(4分)将点A(-2,-3)向左平移3个单位,再向上平移2个单位得到点B,则B的坐标是( )
A.(1,-3)B.(-2,1)C.(-5,-1)D.(-5,-5)
5、(4分)函数y=中,自变量x的取值范围是( )
A.x>-3B.x≠0C.x>-3且x≠0D.x≠-3
6、(4分)某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足( )
A.B.
C.D.
7、(4分)化简的结果是( )
A.B.C.1D.
8、(4分)如图,∠BAC=90°,四边形ADEB、BFGC、CHIA均为正方形,若 S四边形ADEB=6,S四边形BFGC=18,四边形CHIA的周长为( )
A.4B.8C.12D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,CE=3,则DF_____.
10、(4分)如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形,其中,正确的有__________.(填序号)
11、(4分)点A(a,﹣5)和(3,b)关于x轴对称,则ab=_____.
12、(4分)如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为_____.
13、(4分)写出一个经过二、四象限的正比例函数_________________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点A的坐标为(x,y).
(1)请用表格或树状图列出点A所有可能的坐标;
(1)求点A在反比例函数y=图象上的概率.
15、(8分)如图,点D是△ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点。
(1)求证:四边形EFGH是平行四边形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四边形EFGH的周长。
16、(8分)平面直角坐标系中,设一次函数的图象是直线.
(1)如果把向下平移个单位后得到直线,求的值;
(2)当直线过点和点时,且,求的取值范围;
(3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.
17、(10分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若点E到CD的距离为2,CD=3,试求出矩形ABCD的面积.
18、(10分)如图,在四边形中,且,四边形的对角线,相交于,点,分别是,的中点,求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_____.
20、(4分)关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是_____.
21、(4分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是_________________.
22、(4分)如图,在△ABC中,AB=AC,∠BAC=120°,S△ABC=8,点M,P,N分别是边AB,BC,AC上任意一点,则:
(1)AB的长为____________.
(2)PM+PN的最小值为____________.
23、(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.
(1)甲、乙两种图书每本价格分别为多少元?
(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?
25、(10分)如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB
(1)求证:四边形EFCD是菱形;
(2)设CD=2,求D、F两点间的距离.
26、(12分)如图,在△ABC 中,∠B=30°,∠C=45°,AC=2.求 BC 边上的高及△ABC 的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.
【详解】
由题意,得
2x+4≥0,
解得x≥-2,
故选D.
本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
2、B
【解析】
∵四边形ABCD与四边形AEFG是位似图形;
A、四边形ABCD与四边形AEFG一定是相似图形,故正确;
B、AD与AG是对应边,故AD:AE=2:3;故错误;
C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;
D、则周长的比是2:3,面积的比是4:9,故正确.
故选B.
3、A
【解析】
试题分析:构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除.故答案选A.
考点:等腰三角形的判定;坐标与图形性质.
4、C
【解析】
由题中平移规律可知:点B的横坐标为-2-3=-5;纵坐标为-3+2=-1,可知点B的坐标是(-5,-1).
故选C.
5、D
【解析】
试题分析:根据分式的意义,可知其分母不为0,可得x+3≠0,解得x≠-3.
故选D
6、B
【解析】
根据利润=售价-进价,列出出不等式,求解即可.
【详解】
设成本为a元,由题意可得:
则
去括号得:
整理得:
故.
故选B.
考查一元一次不等式的应用,熟练掌握利润=售价-进价是列不等式求解的关键.
7、B
【解析】
根据二次根式的性质可得=∣∣,然后去绝对值符号即可.
【详解】
解:=∣∣=,
故选:B.
本题主要考查二次根式的化简,解此题的关键在于熟记二次根式的性质.
8、B
【解析】
外围正方形的面积就是斜边和一直角边的平方,实际上是求另一直角边的平方,用勾股定理即可解答.
【详解】
解:根据勾股定理我们可以得出:
AB2+AC2=BC2
S正方形ADEB= AB2=6,S正方形BFGC= BC2=18,
S正方形CHIA= AC2=18-6=12,
∴AC=,
∴四边形CHIA的周长为==8
故选:B.
本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、=3
【解析】
分析:根据直角三角形的斜边上的中线等于斜边的一半,可得AB的长,然后根据三角形的中位线的性质,求出DF的长.
详解:∵在△ABC中,∠ACB=90°,E为AB的中点,CE=3
∴AB=6
∵D、F为AC、BC的中点
∴DF=AB=3.
故答案为3.
点睛:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.
10、①②③④
【解析】
①∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形;故①正确;
②若∠BAC=90°,则平行四边形AEDF是矩形;故②正确;
③若AD平分∠BAC,则DE=DF;所以平行四边形是菱形;故③正确;
④若AD⊥BC,AB=AC;根据等腰三角形三线合一的性质知:DA平分∠BAC,由③知:此时平行四边形AEDF是菱形;故④正确;所以正确的结论是①②③④.
11、1.
【解析】
根据关于x轴对称的点的横坐标相同,纵坐标互为相反数可得a、b的值,继而可求得答案.
【详解】
∵点A(a,-5)和点B(3,b)关于x轴对称,
∴a=3,b=5,
∴ab=1,
故答案为:1.
本题考查了关于x轴对称的点的坐标特征,熟练掌握是解题的关键.
12、1
【解析】
利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再根据等角的余角相等证出∠ACD=∠A,从而证明DA=DC,从而得到CD=AB=1.
【详解】
由作法得MN垂直平分BC,
∴DB=DC,
∴∠B=∠BCD,
∵∠B+∠A=90°,∠BCD+∠ACD=90°,
∴∠ACD=∠A,
∴DA=DC,
∴CD=AB=×4=1.
故答案为1.
本题考查了作图﹣基本作图—作已知线段的垂直平分线,以及垂直平分线的性质和等腰三角形的判定,熟练掌握相关知识是解题的关键.
13、y=-2x …(答案不唯一)
【解析】
解:答案不唯一,只要k<0即可.如:y=-2x ….故答案为y=-2x …(答案不唯一).
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(1).
【解析】
(1)横坐标的可能性有两种,纵标的可能性有3种,则A点的可能性有六种,画出树状图即可;
(1)根据点A要在反比例函数y=的图象,则横纵坐标的乘积为1,从而可以选出符合条件的A点,算出概率.
【详解】
解:(1)根据题意,可以画出如下的树状图:
则点A所有可能的坐标有:(1,-1)、(1,0)、(1,1)、(-1,-1)、(-1,0)、(-1,-1);
(1)在反比例函数y=图象上的坐标有:(1,1)、(-1,-1),
所以点A在反比例函数y=图象上的概率为:.
本题考查了概率、反比函数上点的特征,题目难度不大,解题的关键是对用树状图或者列表法求概率的熟练掌握和对反比例函数点的特征的熟悉.
15、(1)见解析;(2)周长为:11.
【解析】
(1)根据三角形的中位线的定理和平行四边形的判定即可解答;
(2)利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.
【详解】
(1)证明:∵点E,F 分别是AB,AC 的中点,
∴EF 是△ABC 的中位线,∴EF∥BC 且EF=BC;
又∵点H,G 分别是BD,CD 的中点,∴HG 是△BCD 的中位线,∴HG∥BC
且HG=BC;
∴EF∥HG 且EF=HG,∴四边形EFGH 是平行四边形.
(2)∵点E,H 分别是AB,BD 的中点,∴EH 是△ABD 的中位线,∴EH=AD=3;
∵∠BDC=90°,∴△BCD 是直角三角形;
在Rt△BCD 中,CD=3,BD=4,∴由勾股定理得:BC=5;
∵HG=BC,∴HG=;
由(1)知,四边形EFGH 是平行四边形,∴周长为2EH+2HG=11.
本题考查了三角形中位线定理, 勾股定理,掌握三角形中位线定理, 勾股定理是解决问题的关键.
16、(1);(2)且;(3)
【解析】
(1)根据一次函数平移的规律列方程组求解;
(2)将两点的坐标代入解析式得出方程组,根据方程组可得出a,b的等量关系式,然后根据b的取值范围,可求出a的取值范围,另外注意一次函数中二次项系数2a-3≠0的限制条件;
(3)先根据点P的坐标求出动点P所表示的直线表达式,再根据直线与平行得出结果.
【详解】
解:(1)依题意得
,
.
(2)过点和点
,
两式相减得;
解法一:,
当时,;
当时,.
,随的增大而增大
且,
.
,.
且.
解法二:
,
,解得.
,
∴.
且.
(3)设,
.
消去得,
动点的图象是直线.
不在上,
与平行,
,.
本题考查一次函数的图像与性质,以及一次函数平移的规律,掌握基本的性质是解题的关键.
17、(1)见解析;(2)矩形ABCD的面积=1.
【解析】
(1)根据对边平行得四边形OCED是平行四边形,由原矩形对角线相等且互相平分得OC=OD,所以四边形OCED是菱形;
(2)根据三角形面积公式和矩形的面积等于4个△DEC的面积解答即可.
【详解】
(1)∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OD=BD,OC=AC,
∴OC=OD,
∴▱OCED是菱形;
(2)∵点E到CD的距离为2,CD=3,
∴△DEC的面积= ,
∴矩形ABCD的面积=4×3=1.
本题考查了矩形的性质,是常考题型,难度不大;需要熟练掌握矩形、菱形的边、角、对角线的关系,不能互相混淆.
18、见解析
【解析】
据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF.
【详解】
解:证明:连接BF、DE,如图所示:
∵,,
∴四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵E、F分别是OA、OC的中点,
∴OE=OA,OF=OC,
∴OE=OF,
∴四边形BFDE是平行四边形,
∴BE=DF.
本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、25°.
【解析】
在Rt△ABC中,∠BAC=65°,所以∠ABC=90°-65°=25°.又AB∥CD,所以∠BCD=∠ABC=25°.
20、a<1且a≠1
【解析】
由关于x的一元二次方程ax2+2x+1=1有两个不相等的实数根,即可得判别式△>1,继而可求得a的范围.
【详解】
∵关于x的一元二次方程ax2+2x+1=1有两个不相等的实数根,
∴△=b2﹣4ac=22﹣4×a×1=4﹣4a>1,
解得:a<1,
∵方程ax2+2x+1=1是一元二次方程,
∴a≠1,
∴a的范围是:a<1且a≠1.
故答案为:a<1且a≠1.
此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>1.
21、甲
【解析】
根据方差的意义即可得出结论.
【详解】
根据方差的定义,方差越小数据越稳定,因为=0.4,=3.2, =1.6,
方差最小的为甲,所以本题中成绩比较稳定的是甲,
故答案为甲.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
22、4; 2.
【解析】
过点A作,垂足为G,依据等腰三角形的性质可得到,设,则,,然后依据三角形的面积公式列方程求解即可;
作点A关于BC的对称点,取,则,过点作,垂足为D,当、P、M在一条直线上且时,有最小值,其最小值.
【详解】
(1)如图所示:过点A作AG⊥BC,垂足为G,
∵AB=AC,∠BAC=120°,∴∠ABC=30°,
设AB=x,则AG,BGx,则BCx,
∴BC•AG•x•x=8,解得:x=4,∴AB的长为4,
故答案为:4;
(2)如图所示:作点A关于BC的对称点A',取CN=CN',则PN=PN',过点A'作A'D⊥AB,垂足为D,
当N'、P、M在一条直线上且MN'⊥AB时,PN+PM有最小值,
最小值=MN'=DA'AB=2,
故答案为:2.
本题考查了翻折的性质、轴对称最短路径、垂线段的性质,将的长度转化为的长度是解题的关键.
23、1
【解析】
首先根据已知易求CD=1,利用角平分线的性质可得点D到AB的距离是1.
【详解】
∵BC=6,BD=4,
∴CD=1.
∵∠C=90°,AD平分∠CAB,
∴点D到AB的距离=CD=1.
故答案为:1.
此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等;本题比较简单,属于基础题.
二、解答题(本大题共3个小题,共30分)
24、(1)乙图书每本价格为20元,则甲图书每本价格是50元;(2)该图书馆最多可以购买28本乙图书.
【解析】
根据两种图书的倍数关系,设乙图书每本的价格为x元,则甲图书每本的价格为2.5x元,再根据同样多的钱购买图书数量相差24本,列方程,求出方程的解即可,分式方程一定要验根.
设购买甲图书m本,则购买乙图书(2m+8)本,再根据总经费不超过1060元,列不等式,求出不等式的解集,进而求得最多可买乙图书的本数.
【详解】
解:(1)设乙图书每本价格为元,则甲图书每本价格是元,
根据题意可得:,
解得:,
经检验得:是原方程的根,
则,
答:乙图书每本价格为20元,则甲图书每本价格是50元;
(2)设购买甲图书本数为,则购买乙图书的本数为:,
故,
解得:,
故,
答:该图书馆最多可以购买28本乙图书.
本题考查分式方程的运用,一元一次不等式组的运用,理解题意,抓住题目蕴含的数量关系解决问题.
25、(1)见解析;(2)
【解析】
(1)由等边三角形的性质得出ED=CD=CE,证出△CEF是等边三角形,得出EF=CF=CE,得出ED=CD=EF=CF,即可得出结论;
(2)连接DF,与CE相交于点G,根据菱形的性质求出DG,即可得出结果.
【详解】
(1)证明:∵△ABC与△CDE都是等边三角形,
∴ED=CD=CE,∠A=∠B=∠BCA=60°.
∴EF∥AB.
∴∠CEF=∠A=60°,∠CFE=∠B=60°,
∴∠CEF=∠CFE=∠ACB,
∴△CEF是等边三角形,
∴EF=CF=CE,
∴ED=CD=EF=CF,
∴四边形EFCD是菱形.
(2)连接DF与CE交于点G
∵四边形EFCD是菱形
∴DF⊥CE, DF=2DG
∵CD=2,△EDC是等边三边形
∴CG=1,DG=
∴DF=2DG=,即D、F两点间的距离为
本题考查了菱形的判定与性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.
26、2,2+2.
【解析】
先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由AC=2 得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.
【详解】
∵AD⊥BC,∠C=45°,
∴△ACD是等腰直角三角形,
∵AD=CD.
∵AC=2,
∴2AD=AC,即2AD=8,解得AD=CD=2.
∵∠B=30°,
∴AB=2AD=4,
∴BD= ,
∴BC=BD+CD=2 +2,
∴S = BC⋅AD= (2+2)×2=2+2.
此题考查勾股定理,解题关键在于求出BD的长.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年重庆市江北区新区联盟九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年江北新区联盟九上数学期末经典模拟试题含答案,共9页。试卷主要包含了在下列函数图象上任取不同两点P,将两个圆形纸片等内容,欢迎下载使用。
这是一份2023-2024学年江北新区联盟数学八上期末质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列各命题的逆命题是真命题的是,下列命题中,真命题是,比较2,,的大小,正确的是,小华在电话中问小明等内容,欢迎下载使用。