2024年福建省福州市华伦中学九年级数学第一学期开学调研模拟试题【含答案】
展开
这是一份2024年福建省福州市华伦中学九年级数学第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
A.平均数B.中位数C.众数D.方差
2、(4分)已知三条线段的长分别为1.5,2,3,则下列线段中,不能与它们组成比例线段的是( )
A.lB.2.25C.4D.2
3、(4分)在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )
A.5B.7C.9D.11
4、(4分)下列实数中,能够满足不等式的正整数是( )
A.-2B.3C.4D.2
5、(4分)若的两根分别是与5,则多项式可以分解为( )
A.B.
C.D.
6、(4分)计算的结果是( )
A.2B.C.D.-2
7、(4分)如图:,,,若,则等于( )
A.B.C.D.
8、(4分)下列图形中,不属于中心对称图形的是( )
A.圆B.等边三角形C.平行四边形D.线段
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)命题”两条对角线相等的平行四边形是矩形“的逆命题是_____.
10、(4分)已知关于x的一次函数y=(3a-7)x+a-2的图像与y轴的交点在x轴的上方,且y随x的增大而减小,则a的取值范围为__________.
11、(4分)如果关于x的分式方程有增根,则增根x的值为_____.
12、(4分)等腰三角形的一个内角是30°,则另两个角的度数分别为___.
13、(4分)已知关于的方程会产生增根,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
15、(8分)为迎接4月23日的世界读书日,某书店制定了活动计划,如表是活动计划的部分信息:
(1)杨经理查看计划时发现:A类图书的标价是B类图书标价的1.5倍.若顾客用540元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本.请求出A、B两类图书的标价.
(2)经市场调查后,杨经理发现他们高估了“读书日”对图书销售的影响,便调整了销售方案:A类图书每本按标价降低a元()销售,B类图书价格不变.那么书店应如何进货才能获得最大利润.
16、(8分)为了积极响应国家新农村建设,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为800米,假使宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:
(1)请问村庄能否听到宣传,并说明理由;
(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?
17、(10分)如图,中,是上的一点,若,,,,求的面积.
18、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数y=x的图象交于点C(m,4)
(1)求m的值及一次函数y=kx+b的表达式;
(2)观察函数图象,直接写出关于x的不等式x≤kx+b的解集;
(3)若P是y轴上一点,且△PBC的面积是8,直接写出点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.
20、(4分)已知反比例函数的图象经过点,则b的值为______.
21、(4分)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有_____个正方形.
22、(4分)在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.
23、(4分)如图,在中,和的角平分线相交于点,若,则的度数为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校“六一”活动购买了一批A,B两种型号跳绳,其中A型号跳绳的单价比B型号跳绳的单价少9元,已知该校用2600元购买A型号跳绳的条数与用3500元购买B型号跳绳的条数相等.
(1)求该校购买的A,B两种型号跳绳的单价各是多少元?
(2)若两种跳绳共购买了200条,且购买的总费用不超过6300元,求A型号跳绳至少购买多少条?
25、(10分)先化简,再求值,其中.
26、(12分)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.
根据图中信息,回答下列问题:
(1)甲的平均数是 ,乙的中位数是 ;
(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
【详解】
要想知道自己是否入选,老师只需公布第五名的成绩,
即中位数.
故选B.
2、D
【解析】
对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 ab=cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.据此求解可得.
【详解】
解:A.由1×3=1.5×2知1与1.5,2,3组成比例线段,此选项不符合题意;
B.由1.5×3=2.25×2知2.25与1.5,2,3组成比例线段,此选项不符合题意;
C.由1.5×4=3×2知4与1.5,2,3组成比例线段,此选项不符合题意;
D.由1.5×3≠2×2知2与1.5,2,3不能组成比例线段,此选项符合题意;
故选:D
本题主要考查了成比例线段的关系,判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.
3、B
【解析】
试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.
4、D
【解析】
将各项代入,满足条件的即可.
【详解】
A选项,-2不是正整数,不符合题意;
B选项,,不符合题意;
C选项,,不符合题意;
D选项,,符合题意;
故选:D.
此题主要考查不等式的正整数解,熟练掌握,即可解题.
5、C
【解析】
先提取公因式2,再根据已知分解即可.
【详解】
∵x2-2px+3q=0的两根分别是-3与5,
∴2x2-4px+6q=2(x2-2px+3p)
=2(x+3)(x-5),
故选:C.
考查了解一元二次方程和分解因式,注意:能够根据方程的解分解因式是解此题的关键.
6、A
【解析】
根据分式的混合运算法则进行计算即可得出正确选项。
【详解】
解:
=2
故选:A
本题考查了分式的四则混合运算,熟练掌握运算法则是解本题的关键.
7、C
【解析】
过点D作DG⊥AC于点G,先根据∠DAE=∠DAF=15°,DE∥AB,DF⊥AB得出∠ADE=∠DAE=15°,DF=DG,再由AE=6可得出DE=6,根据三角形外角的性质可得出∠DEG的度数,由直角三角形的性质得出DG的长,进而可得出结论.
【详解】
解:过点作于点,
,,
,
.
,
.
是的外角,
,
.
故选C.
本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.
8、B
【解析】
试题分析:根据中心对称图形的概念求解.
解:A、是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项正确;
C、是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项错误.
故选B.
【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、矩形是两条对角线相等的平行四边形.
【解析】
把命题的条件和结论互换就得到它的逆命题.
【详解】
命题”两条对角线相等的平行四边形是矩形“的逆命题是矩形是两条对角线相等的平行四边形,
故答案为矩形是两条对角线相等的平行四边形.
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
10、2<a<.
【解析】
分析:根据已知函数的增减性判定3a-7<1,由该函数图象与y轴交点的位置可得a-2>1.
详解:∵关于x一次函数y=(3a-7)x+a-2的图象与y轴的交点在x轴的上方,且y随着x的增大而减少,
∴,
解得2<a<.
故答案是:2<a<.
点睛:考查了一次函数图象与系数的关系.一次函数y=kx-b(k≠1):函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;
一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.
11、x=1
【解析】
根据增根的概念即可知.
【详解】
解:∵关于x的分式方程有增根,
∴增根x的值为x=1,
故答案为:x=1.
本题考查了增根的概念,解题的关键是熟知增根是使得分式方程的最简公分母为零的x的值.
12、75°、75°或30°、120°.
【解析】
分为两种情况讨论,①30°是顶角;②30°是底角;结合三角形内角和定理计算即可
【详解】
①30°是顶角,则底角= (180°﹣30°)=75°;
②30°是底角,则顶角=180°﹣30°×2=120°.
∴另两个角的度数分别是75°、75°或30°、120°.
故答案是75°、75°或30°、120°.
此题考查等腰三角形的性质,难度不大
13、4
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入整式方程算出未知字母的值.
【详解】
方程两边都乘(x−2),得
2x−m=3(x−2),
∵原方程有增根,
∴最简公分母x−2=0,即增根为x=2,
把x=2代入整式方程,得m=4.
故答案为:4.
此题考查分式方程的增根,解题关键在于根据方程有增根进行解答.
三、解答题(本大题共5个小题,共48分)
14、(1)D的长为10m;(1)当a≥50时,S的最大值为1150;当0<a<50时,S的最大值为50a﹣a1.
【解析】
(1)设AB=xm,则BC=(100﹣1x)m,利用矩形的面积公式得到x(100﹣1x)=450,解方程求得x1=5,x1=45,然后计算100﹣1x后与10进行大小比较即可得到AD的长;(1)设AD=xm,利用矩形面积可得S= x(100﹣x),配方得到S=﹣(x﹣50)1+1150,根据a的取值范围和二次函数的性质分类讨论:当a≥50时,根据二次函数的性质得S的最大值为1150;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a
【详解】
(1)设AB=xm,则BC=(100﹣1x)m,
根据题意得x(100﹣1x)=450,解得x1=5,x1=45,
当x=5时,100﹣1x=90>10,不合题意舍去;
当x=45时,100﹣1x=10,
答:AD的长为10m;
(1)设AD=xm,
∴S=x(100﹣x)=﹣(x﹣50)1+1150,
当a≥50时,则x=50时,S的最大值为1150;
当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a1,
综上所述,当a≥50时,S的最大值为1150;当0<a<50时,S的最大值为50a﹣a1.
本题考查了一元二次方程及二次函数的应用.解决第(1)问时,要注意根据二次函数的性质并结合a的取值范围进行分类讨论,这也是本题的难点.
15、 (1)A、B两类图书的标价分别是27元、18元;(2)当书店进A类600本,B类200本时,书店获最大利润.
【解析】
(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
(2)先设购进A类图书m本,总利润为w元,则购进B类图书为(800-m)本,根据题目中所给的信息列出不等式组,求出m的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
【详解】
解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,则可列方程
解得:x=18
经检验:x=18是原分式方程的解
则A、B两类图书的标价分别是27元、18元
(2)设A类进货m本,则B类进货(800-m)本,利润为W元.
由题知:
解得:.
W=(27-a-18)m+(18-12)(800-m)=(3-a)m+4800
∵
∴
∴W随m的增大而增大
∴当m=600时,W取最大值
则当书店进A类600本,B类200本时,书店获最大利润
本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
16、(1)村庄能听到宣传. 理由见解析;(2)村庄总共能听到4分钟的宣传.
【解析】
(1)根据题意村庄A到公路MN的距离为800米<1000米,即可解答
(2)假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响
【详解】
解:(1)村庄能听到宣传.
理由:因为村庄A到公路MN的距离为800米<1000米,所以村庄能听到宣传
(2)如图,假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响,利用勾股定理进行计算即可解答
则AP=AQ=1000米,AB=800米.
∴BP=BQ==600米.
∴PQ=1200米.
、∴影响村庄的时间为:1200÷300=4(分钟).
∴村庄总共能听到4分钟的宣传.
此题考查解直角三角形,利用勾股定理进行计算是解题关键
17、的面积是.
【解析】
根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
【详解】
解:∵BD2+AD2=62+82=102=AB2,
∴△ABD是直角三角形,
∴AD⊥BC,
在Rt△ACD中,
∴S△ABC=BC•AD=(BD+CD)•AD=×21×8=1,
因此△ABC的面积为1.
答:△ABC的面积是1.
此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.
18、(1)y=x+2;(2)x≤3;(3)P 的坐标为(0,)或(0,﹣).
【解析】
(1)把点C(m,4)代入正比例函数y=x即可得到m的值,把点A和点C的坐标代入y=kx+b求得k,b的值即可;
(2)根据图象解答即可写出关于x的不等式x≤kx+b的解集;
(3)点C的坐标为(3,4),说明点C到y轴的距离为3,根据△BPC的面积为8,求得BP的长度,进而求出点P的坐标即可.
【详解】
(1)∵点C(m,4)在正比例函数的y=x图象上,
∴m=4,
∴m=3,
即点C坐标为(3,4),
∵一次函数 y=kx+b经过A(﹣3,0)、点C(3,4)
∴,
解得:,
∴一次函数的表达式为:y=x+2;
(2)由图象可得不等式x≤kx+b的解为:x≤3;
(3)把x=0代入y=x+2得:y=2,
即点B的坐标为(0,2),
∵点P是y轴上一点,且△BPC的面积为8,
∴×BP×3=8,
∴PB=,
又∵点B的坐标为(0,2),
∴PO=2+=,或PO=-+2=-,
∴点P 的坐标为(0,)或(0,﹣).
本题考查了待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,分析图象并结合题意列出符合要求的等式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、90分.
【解析】
试题分析:根据加权平均数的计算公式求解即可.
解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).
故答案为90分.
考点:加权平均数.
20、-1
【解析】
将点的坐标代入反比例函数解析式即可解答.
【详解】
把点(-1,b)代入y=,得b==-1.
故答案是:-1.
考查了反比例函数图象上点的坐标特征.函数图象上所有点的坐标均满足该函数解析式.
21、1
【解析】
观察图形发现:第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…由此得出第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1)个正方形从而得到答案.
【详解】
解:∵第1幅图中有1个正方形,
第2幅图中有1+4=5个正方形,
第3幅图中有1+4+9=14个正方形,
…
∴第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1),
∴第4幅图中有12+22+32+42=1个正方形.
故答案为1.
此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.
22、
【解析】
利用勾股定理可用m表示出OB的长,根据平方的非负数性质即可得答案.
【详解】
∵点B的坐标是(m,m-4),
∴OB==,
∵(m-2)2≥0,
∴2(m-2)2+8≥8,
∴的最小值为=,即OB的最小值为,
故答案为:
本题考查勾股定理的应用及平方的非负数性质,熟练掌握平方的非负数性质是解题关键.
23、70°
【解析】
根据三角形的内角和等于180°,求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和等于180°,列式计算即可得解.
【详解】
解:∵,
∴∠OBC+∠OCB=180°-125°=55°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠ABC+∠ACB=2(∠OBC+∠OCB)=110°,
∴∠A=180°-110°=70°;
故答案为:70°.
此题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)A型跳绳的单价为1元/条,B型跳绳的单价为35元/条;(2)A型跳绳至少购买78条.
【解析】
(1)设B型跳绳的单价为x元/条,则A型跳绳的单价为(x﹣9)元/条,根据“用100元购买A型号跳绳的条数与用3500元购买B型号跳绳的条数相等”列出方程求解即可;
(2)设购买a条A型跳绳,则购买(200﹣a)条B型跳绳,根据题意列出不等式求解即可.
【详解】
(1)设B型跳绳的单价为x元/条,则A型跳绳的单价为(x﹣9)元/条,
根据题意得:,
解得:x=35,
经检验,x=35是原方程的解,且符合题意,
∴x﹣9=1.
答:A型跳绳的单价为1元/条,B型跳绳的单价为35元/条.
(2)设购买a条A型跳绳,则购买(200﹣a)条B型跳绳,
根据题意得:1a+35(200﹣a)≤6300,
解得:a≥.
∵这里的a是整数
∴a的最小值为78
答:A型跳绳至少购买78条.
本题考查了分式方程的实际问题,以及不等式与方案选择问题,解题的关键是读懂题意,抓住等量关系,列出方程或不等式.
25、
【解析】
先把分式通分,把除法转换成乘法,再化简,然后进行计算
【详解】
解:
=
=·
=x-1
当x=+1时,原式=+1-1=
故答案为
本题考查了分式的混合运算-化简求值,是中考常考题,解题关键在于细心计算.
26、(1)8;7.5(2)乙运动员射击更稳定
【解析】
(1)根据平均数和中位数的定义解答即可;
(2)计算方差,并根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答.
【详解】
解:(1)甲的平均数==8.
乙的十次射击成绩按从小到大顺序排列为7,7,7,7,7,8,9,9,9,10,中位数是7.5;
故答案为8;7.5;
(2)=[+++]=1.6;
乙=(7+7+7+7+7+8+9+9+9+10)=8,
=[++]=1.2;
∴
∴乙运动员的射击成绩更稳定.
此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年福建省福州市延安中学数学九年级第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年福建省福州市台江区华伦中学中考数学一模试卷,共6页。试卷主要包含了下列说法正确的是,已知点A,关于函数y=﹣3等内容,欢迎下载使用。
这是一份2023-2024学年福建省福州市华伦中学数学九上期末学业水平测试模拟试题含答案,共7页。