2023-2024学年福建省福州市台江区华伦中学九年级数学第一学期期末达标检测试题含答案
展开
这是一份2023-2024学年福建省福州市台江区华伦中学九年级数学第一学期期末达标检测试题含答案,共7页。试卷主要包含了若角都是锐角,以下结论,如图,抛物线的对称轴为直线等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.关于反比例函数y=﹣的图象,下列说法正确的是( )
A.经过点(﹣1,﹣4)
B.图象是轴对称图形,但不是中心对称图形
C.无论x取何值时,y随x的增大而增大
D.点(,﹣8)在该函数的图象上
2.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是2cm,则这个正六边形的周长是( )
A.12B.6C.36D.12
3.把抛物线向右平移个单位,再向上平移个单位,得到的抛物线是( )
A.B.C.D.
4.若二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(3,0),则方程ax2+bx+c=0的解为( )
A.x1=﹣3,x2=﹣1B.x1=1,x2=3
C.x1=﹣1,x2=3D.x1=﹣3,x2=1
5.若角都是锐角,以下结论:①若,则;②若,则;③若,则;④若,则.其中正确的是( )
A.①②B.①②③C.①③④D.①②③④
6.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出1个球,恰好是红球的概率为( )
A.B.C.D.
7.如图:矩形的对角线、相较于点,,,若,则四边形的周长为( )
A.B.C.D.
8.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是( )
A.5B.4C.3D.0
9.抛物线的对称轴为直线( )
A.B.C.D.
10.把Rt△ABC各边的长度都扩大3倍得到Rt△A′B′C′,对应锐角A,A′的正弦值的关系为( )
A.sinA=3sinA′ B.sinA=sinA′ C.3sinA=sinA′ D.不能确定
二、填空题(每小题3分,共24分)
11.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.
12.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.
13.如图,正方形的边长为,在边上分别取点,,在边上分别取点,使.....依次规律继续下去,则正方形的面积为__________.
14.我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是____.
15.如图,抛物线y=﹣2x2+2与x轴交于点A、B,其顶点为E.把这条抛物线在x轴及其上方的部分记为C1,将C1向右平移得到C2,C2与x轴交于点B、D,C2的顶点为F,连结EF.则图中阴影部分图形的面积为______.
16.若是一元二次方程的两个实数根,则_______.
17.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)
18.已知△ABC与△DEF是两个位似图形,它们的位似比为,若,那么________
三、解答题(共66分)
19.(10分)哈尔滨市教育局以冰雪节为契机,在全市校园内开展多姿多彩的冰雪活动.某校为激发学生参与冰雪体育活动热情,开设了“滑冰、抽冰尜、冰球、冰壶、雪地足球”五个冰雪项目,并开展了以“我最喜欢的冰雪项目”为主题的调查活动,围绕“在滑冰、抽冰尜、冰球、冰壶、雪地足球中,你最喜欢的冰雪项目是什么?(每名学生必选且只选一个)”的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整的统计图.请根据统计图的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)求本次调查中,最喜欢冰球项目的人数,并补全条形统计图;
(3)若该中学共有1800名学生,请你估计该中学最喜欢雪地足球的学生约有多少名.
20.(6分)已知,二次三项式﹣x2+2x+1.
(1)关于x的一元二次方程﹣x2+2x+1=﹣mx2+mx+2(m为整数)的根为有理数,求m的值;
(2)在平面直角坐标系中,直线y=﹣2x+n分别交x,y轴于点A,B,若函数y=﹣x2+2|x|+1的图象与线段AB只有一个交点,求n的取值范围.
21.(6分)一件商品进价100元,标价160元时,每天可售出200件,根据市场调研,每降价1元,每天可多售出10件,反之,价格每提高1元,每天少售出10件.以160元为基准,标价提高m元后,对应的利润为w元.
(1)求w与m之间的关系式;
(2)要想获得利润7000元,标价应为多少元?
22.(8分)如图,已知矩形ABCD的周长为12,E,F,G,H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.
(1)请直接写出y与x之间的函数关系式;
(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.
23.(8分)某市2012年国民经济和社会发展统计公报显示,2012年该市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:
(1)求经济适用房的套数,并补全图1;
(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2012年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?
(3)如果计划2014年新开工廉租房建设的套数要达到720套,那么2013~2014这两年新开工廉租房的套数的年平均增长率是多少?
24.(8分)某区为创建《国家义务教育优质均衡发展区》,自2016年以来加大了教育经费的投入,2016年该区投入教育经费9000万元,2018年投入教育经费12960万元,假设该区这两年投入教育经费的年平均增长率相同
(1)求这两年该区投入教育经费的年平均增长率
(2)若该区教育经费的投入还将保持相同的年平均增长率,请你预算2019年该区投入教育经费多少万元
25.(10分)如图,一根竖直的木杆在离地面3.1处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:)
26.(10分)若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为、十位上的数字为,三位数是“差数”,我们就记:,其中,,.例如三位数1.∵,∴1是“差数”,∴.
(1)已知一个三位数的百位上的数字是6,若是“差数”,,求的值;
(2)求出小于300的所有“差数”的和,若这个和为,请判断是不是“差数”,若是,请求出;若不是,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、A
4、C
5、C
6、B
7、B
8、C
9、C
10、B
二、填空题(每小题3分,共24分)
11、1
12、
13、
14、.
15、1
16、1
17、
18、1
三、解答题(共66分)
19、(1)60;(2)12,图见解析;(3)450
20、(1)m=7;(2)n≤﹣2或1≤n<2.
21、(1)w=﹣1m2﹣400m+12000(0≤m≤20);(2)标价应为11元或170元.
22、 (1) y=-x2+3x;(2) 当x=3时,y有最大值,为4.5.
23、(6)665套;(5);(5)55%.
24、(1)20%;(2)15552万元
25、8.1m
26、(1);(2)小于300的“差数”有101,110,202,211,220,n是“差数”,
相关试卷
这是一份2023-2024学年福建省福州市台江区福州华伦中学数学九上期末预测试题含答案,共7页。试卷主要包含了如图等内容,欢迎下载使用。
这是一份福建省福州市华伦中学2023-2024学年九上数学期末达标检测模拟试题含答案,共8页。
这是一份2023-2024学年福建省福州市台江区福州华伦中学数学九上期末教学质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知,则,方程x2=3x的解为等内容,欢迎下载使用。