2024年鄂尔多斯市重点中学九上数学开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若二次根式有意义,则x能取的最小整数值是( )
A.x=0B.x=1C.x=2D.x=3
2、(4分)在“美丽乡村”评选活动中,某乡镇5个村的得分如下:90,88,96,92,96,这组数据的中位数和众数分别是( )
A.90,96B.92,96C.92,98D.91,92
3、(4分)如图,在中,,,.点,,分别是相应边上的中点,则四边形的周长等于( )
A.8B.9C.12D.13
4、(4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是( )
A.B.
C.D.
5、(4分)矩形ABCD中,已知AB=5,AD=12,则AC长为( )
A.9B.13C.17D.20
6、(4分)如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则kx+b<4x+4的解集为( )
A.x>B.x<C.x<1D.x>1
7、(4分)二次根式中字母 x 的取值范围是( )
A.x≠﹣3B.x≥﹣3C.x>﹣3D.全体实数
8、(4分)若平行四边形中两个邻角的度数比为1:3,则其中较小的内角是( )
A.30°B.45°C.60°D.75°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在弹性限度内,弹簧的长度是所挂物体质量的一次函数,当所挂物体的质量分别为和时,弹簧长度分别为和,当所挂物体的质量为时弹簧长________厘米?
10、(4分)对于一个函数,如果它的自变量 x 与函数值 y 满足:当−1≤x≤1 时,−1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=−x 均是“闭函数”. 已知 y ax2 bx c(a0) 是“闭函数”,且抛物线经过点 A(1,−1)和点 B(−1,1),则 a 的取值范围是______________.
11、(4分)已知函数,当时,函数值为______.
12、(4分)如图,在平行四边形ABCD中,连接AC,按以下步骤作图:分别以点A,C为圆心,以大于AC的长为半径画弧,两弧分别相交于点M,N,作直线MN交CD于点E,交AB于点F.若AB=5,BC=3,则△ADE的周长为__________.
13、(4分)若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算
(1)
(2);
15、(8分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了解学生对四大名著的阅读情况,就“四大古典名著”你读完了几部的问题在全校900名学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.
请根据以上信息,解决下列问题
(1)本次调查被调查的学生__________名,学生阅读名著数量(部)的众数是__________,中位数是__________;
(2)扇形统计图中“1部”所在扇形的圆心角为__________度;
(3)请将条形统计图补充完整;
(4)试估算全校大约有多少学生读完了3部以上(含3部)名著.
16、(8分)如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.
(1)求证:四边形EGFH为平行四边形;
(2)当= 时,四边形EGFH为矩形.
17、(10分)先阅读下面的材料,再解答下面的问题:如果两个三角形的形状相同,则称这两个三角形相似.如图1,△ABC与△DEF形状相同,则称△ABC与△DEF相似,记作△ABC∽△DEF.那么,如何说明两个三角形相似呢?我们可以用“两角分别相等的三角形相似”加以说明.用数学语言表示为:
如图1:在△ABC与△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF.
请你利用上述定理解决下面的问题:
(1)下列说法:①有一个角为50°的两个等腰三角形相似;②有一个角为100°的两个等腰三角形相似;③有一个锐角相等的两个直角三角形相似;④两个等边三角形相似.其中正确的是______(填序号);
(2)如图2,已知AB∥CD,AD与BC相交于点O,试说明△ABO∽△DCO;
(3)如图3,在平行四边形ABCD中,E是DC上一点,连接AE.F为AE上一点,且∠BFE=∠C,求证:△ABF∽△EAD.
18、(10分)如图,已知□ABCD.
(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC.(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD ≌ △EFC.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC的长是______.
20、(4分)如果点P(m+3,m+1)在x轴上,则点P的坐标为________
21、(4分)已知反比例函数的图象经过点,则b的值为______.
22、(4分)如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_________cm.
23、(4分)已知,在梯形中,,,,,那么下底的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.
(1)求证:∠DEF=∠ABF;
(2)求证:F为AD的中点;
(3)若AB=8,AC=10,且EC⊥BC,求EF的长.
25、(10分)如图1,在△ABC中,AB=BC=5,AC=6,△ECD是△ABC沿BC方向平移得到的,连接AE、BE,且AC和BE相交于点O.
(1)求证:四边形ABCE是菱形;
(2)如图2,P是线段BC上一动点(不与B.C重合),连接PO并延长交线段AE于点Q,过Q作QR⊥BD交BD于R.
①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;
②以点P、Q、R为顶点的三角形与以点B.C.O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.
26、(12分)如图,已知是的中线,且
求证:
若,试求和的长
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
直接利用二次根式的定义分析得出答案.
【详解】
解:∵二次根式有意义,
∴3x﹣2≥0,
解得:x≥,
则x能取的最小整数值是:1.
故选:B.
此题主要考查了二次根式的定义,正确得出m的取值范围是解题关键.
2、B
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
【详解】
众数是一组数据中出现次数最多的数,在这一组数据中96出现了2次,次数最多,故众数是96;
将这组数据从小到大的顺序排列为:88,90,1,96,96,处于中间位置的那个数是1,那么由中位数的定义可知,这组数据的中位数是1.
故选:B.
本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
3、B
【解析】
根据三角形中位线的性质及线段的中点性质求解即可.
【详解】
解:点,,分别是相应边上的中点
是三角形ABC的中位线
同理可得,
四边形的周长
故答案为:B
本题考查了三角形的中位线,熟练运用三角形中位线的性质求线段长是解题的关键.
4、D
【解析】
试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:
①男女生共20人;
②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.
据此列出方程组:.
故选D.
考点:由实际问题抽象出二元一次方程组.
5、B
【解析】
由勾股定理可求出BD长,由矩形的性质可得AC=BD=1.
【详解】
如图,矩形ABCD中,∠BAD=90°,AB=5,AD=12,∴1,∴AC=BD=1.
故选B.
本题考查了矩形的性质,勾股定理,求出DB的长是解答本题的关键.
6、A
【解析】
将点A(m,)代入y=4x+4求出m的值,观察直线y=kx+b落在直线y=4x+4的下方对应的x的取值即为所求.
【详解】
∵经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),
∴4m+4=,
∴m=-,
∴直线y=kx+b与直线y=4x+4的交点A的坐标为(-,),直线y=kx+b与x轴的交点坐标为B(1,0),
∴当x>-时,kx+b<4x+4,
故选A.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
7、D
【解析】
根据任何实数的平方是非负数,可得答案.
【详解】
二次根式中字母x的取值范围是x+3任意实数,
x是任意实数.
故选:D.
此题考查二次根式有意义的条件,解题关键在于掌握其定义.
8、B
【解析】
根据平行四边形的性质,可设较小的角为x,较大的角是3x,列式子即可得出结果.
【详解】
设较小的角为x,较大的是3x,x+3x=180,x=45°.
故选B.
本题考查平行四边形的性质,比较简单.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;把x=4时代入解析式求出y的值即可.
【详解】
设y与x的函数关系式为y=kx+b,由题意,得:
,
解得: .
故y与x之间的关系式为:y= x+14.1;
当x=4时,
y=0.1×4+14.1=16.1.
故答案为:16.1
此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
10、或
【解析】
分析:分别把点A、B代入函数的解析式,求出a、b、c的关系,然后根据抛物线的对称轴x=,然后结合图像判断即可.
详解:∵y ax2 bx c(a0)经过点 A(1,−1)和点 B(−1,1)
∴a+b+c=-1,a-b+c=1
∴a+c=0,b=-1
则抛物线为:y ax2 bx –a
∴对称轴为x=
①当a<0时,抛物线开口向下,且x=<0,如图可知,当≤-1时符合题意,所以;当-1<<0时,图像不符合-1≤y≤1的要求,舍去;
②当a>0时,抛物线的开口向上,且x=>0,由图可知≥1时符合题意,∴0<a≤;当0<<1时,图像不符合-1≤y≤1的要求,舍去.
综上所述,a的取值范围是:或.
故答案为或.
点睛:本题考查的是二次函数的性质,在解答此题时要注意进行分类讨论,不要漏解.
11、5
【解析】
根据x的值确定函数解析式代入求y值.
【详解】
解:因为>0,所以
故答案为5
本题考查了函数表达式,正确选择相应自变量范围内的函数表达式是解题的关键.
12、8
【解析】
解:由做法可知MN是AC的垂直平分线,
∴AE=CE.
∵四边形ABCD是平行四边形
∴CD=AB=5,AD=BC=3.
∴AD+DE+AE=AD+DE+CE=AD+CD=5+3=8,
∴△ADE的周长为8.
13、
【解析】
根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.
【详解】
解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,
∴ ,
整理得, ,
∴
当时,
故答案为:.
本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)+;(2)x1=5,x2=−1.
【解析】
(1)先算乘法,再合并同类二次根式即可;
(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
解:(1)原式=3−+2−2
=+;
(2)x2−4x−5=0,
(x−5)(x+1)=0,
x−5=0,x+1=0,
x1=5,x2=−1.
本题考查了二次根式的混合运算和解一元二次方程,能正确运用运算法则进行计算是解此题的关键.
15、(1)40,1,2;(2)126;(3)见解析;(4)315人.
【解析】
(1)根据统计图中的数据可以求得众数、中位数,
(2)据统计图中的数据可以求得相应的圆心角的度数;
(3)根据统计图中的数据,可以求得读一部的学生数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以求得看完3部以上(包含3部)的有多少人.
【详解】
解:(1)本次调查的学生有:10×25%=40(人),
读一部的有:40-2-10-8-6=14(人),
本次调查所得数据的众数是1部,
∵2+14+10=26>21,2+14<20,
∴中位数为2部,
(2)扇形统计图中“1部”所在扇形的圆心角为:,
故答案为:.
(3)补全的条形统计图如右图所示;
(4))∵=315(人),
∴看完3部以上(包含3部)的有315人.
本题考查条形统计图、扇形统计图、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.
16、(1)见解析;
(2)当时,平行四边形EGFH是矩形,理由见解析.
【解析】
(1)可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.
(2)证出四边形ABFE是菱形,得出AF⊥BE,即∠EGF=90°,即可得出结论.
【详解】
证明:
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
∵点E. F分别是AD、BC的中点
∴AE=ED=AD,BF=FC=BC,
∴AE∥FC,AE=FC.
∴四边形AECF是平行四边形.
∴GF∥EH.
同理可证:ED∥BF且ED=BF.
∴四边形BFDE是平行四边形.
∴GE∥FH.
∴四边形EGFH是平行四边形.
(2)当时,平行四边形EGFH是矩形.理由如下:
连接EF,如图所示:
由(1)同理可证四边形ABFE是平行四边形,
当时,即BC=2AB,AB=BF,
∴四边形ABFE是菱形,
∴AF⊥BE,即∠EGF=90∘,
∴平行四边形EGFH是矩形.
全等三角形的判定与性质,平行四边形的判定与性质,矩形的判定.对于问题(1)利用两组对边分别平行的四边形是平行四边形证明四边形EGFH是平行四边形,在这个过程中可证明四边形AECF和四边形BFDE是平行四边形是平行四边形;对于问题(2)再(1)的基础上只需要证明有一个角是直角即可,这里借助菱形的对角线互相垂直平分,只需要证明四边形ABFE是菱形即可.
17、(1)②③④;(2)见解析;(3)见解析
【解析】
(1)由于50°的角可作为等腰三角形的顶角,也可以作为底角,由此可判断①;而100°的角只能作为等腰三角形的顶角,故可判断②;根据直角三角形的性质可判断③;根据等边三角形的性质可判断④,进而可得答案;
(2)根据平行线的性质和材料提供的方法解答即可;
(3)根据平行四边形的性质和平行线的性质可得∠BAE=∠AED,∠D+∠C=180°,然后根据已知和补角的性质可得∠D=∠AFB,进而可得结论.
【详解】
解:(1)①由于50°的角可作为等腰三角形的顶角,也可以作为底角,所以有一个角为50°的两个等腰三角形不一定相似,所以①错误;
②由于100°的角只能作为等腰三角形的顶角,所以有一个角为100°的两个等腰三角形一定相似,所以②正确;
③有一个锐角相等的两个直角三角形一定相似,所以③正确;
④两个等边三角形一定相似,所以④正确.
故答案为②③④;
(2)∵AB∥CD,∴∠A=∠D,∠B=∠C,
∴△ABO∽△DCO;
(3)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠BAE=∠AED,∠D+∠C=180°,
∵∠AFB+∠BFE=180°,∠BFE=∠C,
∴∠D=∠AFB,
∴△ABF∽△EAD.
本题以阅读理解的形式考查了平行线的性质、平行四边形的性质和相似三角形的判定,解题的关键是正确理解题意、熟练掌握上述基本知识.
18、(1)作图解析;(2)证明见解析.
【解析】
(1)根据题目要求画出图形即可.
(2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.
【详解】
(1)如图所示:
(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC
∵BC=CE,
∴AD=CE
∵AD∥BC,
∴∠DAF=∠CEF
在△ADF和△ECF中,
∵ ,
∴△ADF≌△ECF(AAS)
本题主要考查尺规作图以及全等三角形的证明、平行四边形的性质,熟练掌握全等三角形证明方法是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,则斜边AB=2CD=1,则根据勾股定理即可求出BC的长.
【详解】
解:在Rt△ABC中,CD是斜边AB上的中线,CD=2,
∴AB=2CD=1.
∴BC===.
故答案为:.
本题主要考查直角三角形中斜边上的中线的性质及勾股定理,掌握直角三角形中斜边上的中线是斜边的一半是解题的关键.
20、(2,0)
【解析】
根据x轴上点的坐标特点解答即可.
【详解】
解:∵点P(m+3,m+1)在直角坐标系的x轴上,
∴点P的纵坐标是0,
∴m+1=0,解得,m=-1,
∴m+3=2,则点P的坐标是(2,0).
故答案为(2,0).
21、-1
【解析】
将点的坐标代入反比例函数解析式即可解答.
【详解】
把点(-1,b)代入y=,得b==-1.
故答案是:-1.
考查了反比例函数图象上点的坐标特征.函数图象上所有点的坐标均满足该函数解析式.
22、1
【解析】
根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.
【详解】
Rt△ACD中,AC=AB=4cm,CD=3cm;
根据勾股定理,得:AD==5(cm);
∴AD+BD-AB=1AD-AB=10-8=1cm;
故橡皮筋被拉长了1cm.
故答案是:1.
此题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.
23、11
【解析】
首先过A作AE∥DC交BC与E,可以证明四边形ADCE是平行四边形,得CE=AD=4,再证明△ABE是等边三角形,进而得到BE=AB=6,从而得到答案.
【详解】
解:如图,过A作AE∥DC交BC与E,
∵AD∥BC,
∴四边形AECD是平行四边形,
∴AD=EC=5,AE=CD,
∵AB=CD=6,
∴AE=AB=6,
∵∠B=60°,
∴△ABE是等边三角形,
∴BE=AB=6,
∴BC=6+5=11,
故答案为11.
此题主要考查了梯形,关键是掌握梯形中的重要辅助线,过一个顶点作一腰的平行线得到一个平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3)
【解析】
(1)根据等角的余角相等证明即可;
(2)如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,首先证明△ANB≌△DME,可得AN=DM,然后证明△AFN≌△DFM,求出AF=FD即可;(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,想办法求出FM,EM即可.
【详解】
(1)证明: ∵CB=CE,
∴∠CBE=∠CEB,
∵∠ABC=∠CED=90°,
∴∠DEF+∠CEB=90°,∠ABF+∠CBE=90°,
∴∠DEF=∠ABF.
(2)证明:如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.
∵∠ABN=∠DEM,∠ANB=∠M=90°,AB=DE,
∴△ANB≌△DME(AAS),
∴AN=DM,
∵∠ANF=∠M=90°,∠AFN=∠DFM,AN=DM,
∴△AFN≌△DFM(AAS),
∴AF=FD,即F为AD的中点;
(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.
在Rt△ABC中,∵∠ABC=90°,AC=10,AB=8,
∴BC=EC==6,
∵EC⊥BC,
∴∠BCE=∠ACD=90°,
∵AC=CD=10,
∴AD=10,
∴DF=AF=5,
∵∠MED=∠CEB=45°,
∴EM=MD=4,
在Rt△DFM中,FM==3,
∴EF=EM-FM=.
本题考查旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
25、(1)见解析;(2)①24,②;
【解析】
(1)利用平移的性质以及菱形的判定得出即可;
(2)①首先过E作EF⊥BD交BD于F,则∠EFB=90°,证出△QOE≌△POB,利用QE=BP,得出四边形PQED的面积为定值;
②当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3,过O作OG⊥BC交BC于G,得出△OGC∽△BOC,利用相似三角形的性质得出CG的长,进而得出BP的长.
【详解】
(1)证明:∵△ABC沿BC方向平移得到△ECD,
∴EC=AB,AE=BC,
∵AB=BC,
∴EC=AB=BC=AE,
∴四边形ABCE是菱形;
(2)①四边形PQED的面积是定值,理由如下:
过E作EF⊥BD交BD于F,则∠EFB=90°,
∵四边形ABCE是菱形,
∴AE∥BC,OB=OE,OA=OC,OC⊥OB,
∵AC=6,
∴OC=3,
∵BC=5,
∴OB=4,sin∠OBC= ,
∴BE=8,
∴EF=BE⋅sin∠OBC=8×,
∵AE∥BC,
∴∠AEO=∠CBO,四边形PQED是梯形,
在△QOE和△POB中
,
∴△QOE≌△POB,
∴QE=BP,
∴S = (QE+PD)×EF= (BP+DP)×EF=×BD×EF=×2BC×EF=BC×EF=5× =24;
②△PQR与△CBO可能相似,
∵∠PRQ=∠COB=90°,∠QPR>∠CBO,
∴当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3.
过O作OG⊥BC交BC于G.
∵∠OCB=∠OCB,∠OGC=∠BOC,
∴△OGC∽△BOC,
∴CG:CO=CO:BC,
即CG:3=3:5,
∴CG= ,
∴BP=BC−PC=BC−2CG=5−2×= .
此题考查相似形综合题,涉及了相似三角形的判定与性质,解直角三角形,菱形的性质,平移的性质等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
26、(1)见解析;(2)
【解析】
(1)通过利用等角的补角相等得到,又已知,即可得证
(2)AD为中线,得到DC=4,又易证,利用比例式求出AC,再由(1)得到,列出比例式可得到AD
【详解】
证明:
解:是的中线
由得
本题主要考查相似三角形的判定与性质,第二问的关键在于找到相似三角形,利用对应边成比例求出线段
题号
一
二
三
四
五
总分
得分
批阅人
2024年安徽省宿州地区数学九上开学统考试题【含答案】: 这是一份2024年安徽省宿州地区数学九上开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年唐山市重点中学九上数学开学统考试题【含答案】: 这是一份2024-2025学年唐山市重点中学九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年厦门市重点中学九上数学开学统考模拟试题【含答案】: 这是一份2024-2025学年厦门市重点中学九上数学开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。