内蒙古通辽市奈曼旗2024年九上数学开学统考模拟试题【含答案】
展开
这是一份内蒙古通辽市奈曼旗2024年九上数学开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围是( )
A.k≥1B.k≤4C.k<1D.k≤1
2、(4分)在式子,,,中,x可以取1和2的是( )
A.B.C.D.
3、(4分)如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是( )
A.若BG∥CH,则四边形BHCG为矩形
B.若BE=CE时,四边形BHCG为矩形
C.若HE=CE,则四边形BHCG为平行四边形
D.若CH=3,CG=4,则CE=2.5
4、(4分)如图,将□ABCD的一边BC延长至点E,若∠A=110°,则∠1等于( )
A.110°B.35°C.70°D.55°
5、(4分)一直尺与一个锐角为角的三角板如图摆放,若,则的度数为( )
A.B.C.D.
6、(4分)下列调查的样本所选取方式,最具有代表性的是( )
A.在青少年中调查年度最受欢迎的男歌手
B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间
C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查
D.对某市的出租车司机进行体检,以此反映该市市民的健康状况
7、(4分)关于x的方程x2-mx+2m=0的一个实数根是3,并且它的两个实数根恰好是等腰△ABC的两边长,则△ABC的腰长为( )
A.3B.6C.6或9D.3或6
8、(4分)如图,□ABCD中,AB=6,E是BC边的中点,F为CD边上一点,DF=4.8,∠DFA=2∠BAE,则AF 的长为( )
A.4.8B.6C.7.2D.10.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为_________.
10、(4分)如图,一棵大树在离地面4米高的处折断,树顶落在离树底端的5米远处,则大树折断前的高度是______米(结果保留根号).
11、(4分)某班有48名同学,在一次英语单词竞赛成绩统计中,成绩在81~ 90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的同学有_________名.
12、(4分)若a=,则=_____.
13、(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.
(1)求A型空调和B型空调每台各需多少元;
(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?
(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
15、(8分)在“母亲节”前夕,店主用不多于900元的资金购进康乃馨和玫瑰两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?
16、(8分)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑。已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.
(1)求A、B两种型号电脑每台价格各为多少万元?
(2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,则最多可购买A种型号电脑多少台?
17、(10分)如图,一次函数y1=-x+b的图象与反比例函数y2= (x>0)的图象交于A、B两点,与x轴交于点C,且点A的坐标为(1,2),点B的横坐标为1.
(1)在第一象限内,当x取何值时,y1>y2?(根据图直接写出结果)
(2)求反比例函数的解析式及△AOB的面积.
18、(10分)解不等式组: ,并把它的解集在数轴上表示出来
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图, 是某地区 5 月份某周的气温折线图,则这个地区这个周的气温的极差是_____℃.
20、(4分) 如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则Sn=_____.(用含n的式子表示)
21、(4分)若一直角三角形的两边长为4、5,则第三边的长为________ .
22、(4分)如图,平行四边形ABCD中,,,AE平分交BC于点E,则CE的长为______.
23、(4分)某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m,则购买这种地毯至少需要_____元.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1)(结果保留根号);
(2)(a>0,b>0)(结果保留根号).
25、(10分)如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的倍,那么称这样的方程为“倍根方程”,例如,一元二次方程的两个根是和,则方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,则= .
(2)若关于的一元二次方程是“倍根方程”,则,,之间的关系为 .
(3)若是“倍根方程”,求代数式的值.
26、(12分)如图,是边长为的等边三角形.
(1)求边上的高与之间的函数关系式。是的一次函数吗?如果是一次函数,请指出相应的与的值.
(2)当时,求的值.
(3)求的面积与之间的函数关系式.是的一次函数吗?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由一元二次方程有实数根可得△=b2﹣4ac=22﹣4×k×1≥0,解不等式即可.
【详解】
∵△=b2﹣4ac=22﹣4×k×1≥0,
解得:k≤1,
故选D.
【点评】
本题考查了一元二次方程根的判别式的应用,解此类题时切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
2、C
【解析】
根据分式和二次根式成立的条件逐个式子分析即可.
【详解】
A.有意义时x≠1,不能取1,故不符合题意;
B.有意义时x≠2,不能取2,故不符合题意;
C.有意义时x≥1,以取1和2,故符合题意;
D.有意义时x≥2,不能取1,故不符合题意;
故选C.
本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于零,二次根式有意义的条件是被开方式大于且等于零.
3、C
【解析】
由∠ACB角平分线和它的外角的平分线分别交DE于点G和H可得∠HCG=90°,∠ECG=∠ACG即可得HE=EC=EG,再根据A,B,C,D的条件,进行判断.
【详解】
解:∵∠ACB角平分线和它的外角的平分线分别交DE于点G和H,
∴∠HCG=90°,∠ECG=∠ACG;
∵DE∥AC.
∴∠ACG=∠HGC=∠ECG.
∴EC=EG;
同理:HE=EC,
∴HE=EC=EG=HG;
若CH∥BG,
∴∠HCG=∠BGC=90°,
∴∠EGB=∠EBG,
∴BE=EG,
∴BE=EG=HE=EC,
∴CHBG是平行四边形,且∠HCG=90°,
∴CHBG是矩形;
故A正确;
若BE=CE,
∴BE=CE=HE=EG,
∴CHBG是平行四边形,且∠HCG=90°,
∴CHBG是矩形,
故B正确;
若HE=EC,则不可以证明四边形BHCG为平行四边形,
故C错误;
若CH=3,CG=4,根据勾股定理可得HG=5,
∴CE=2.5,
故D正确.
故选C.
本题考查了矩形的判定,平行四边形的性质和判定,关键是灵活这些判定解决问题.
4、C
【解析】
根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.
【详解】
∵四边形ABCD是平行四边形,
∴∠BCD=∠A=110°,
∴∠1=180°﹣∠BCD=180°﹣110°=70°,
故选C.
本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.
5、C
【解析】
由直尺为矩形,有两组对边分别平行,则可求∠4的度数,再由三角形内角和定理可以求∠EAD,而∠2与∠EAD为对顶角,则可以求∠2=∠EAD.
【详解】
如图,
∵直尺为矩形,两组对边分别平行
∴∠1+∠4=180°
∴∠4=180°∠1=180°-115°=65°
∵∠EDA=∠4
∴在△EAD中,∠EAD=180°-∠E-∠EDA
∵∠E=30°
∴∠EAD=180°-∠E-∠EDA=180°-30°-65°=85°
∵∠2=∠EAD
∴∠2=85°
故选C.
此题主要考查平行线的性质,遇到三角板的题型,要注意在题中有隐藏着已知的度数.
6、B
【解析】
试题解析:A. 只在青少年中调查不具有代表性,故本选项不符合题意;
B. 了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;
C. 只向八年级的同学进行调查不具有代表性,故本选项不符合题意;
D. 反映该市市民的健康状况只对出租车司机调查不具有代表性,故本选项不符合题意.
故选B.
7、B
【解析】
先把x=1代入方程x2-mx+2m=0求出m得到原方程为x2-9x+18=0,利用因式分解法解方程得到x1=1,x2=6,然后根据等腰三角形三边的关系和等腰三角形的确定等腰△ABC的腰和底边长.
【详解】
解:把x=1代入方程x2-mx+2m=0得9-1m+2m=0,解得m=9,
则原方程化为x2-9x+18=0,
(x-1)(x-6)=0,
所以x1=1,x2=6,
所以等腰△ABC的腰长为6,底边长为1.
故选:B.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.
8、C
【解析】
在AF上截取AG=AB,连接EG,CG.利用全等三角形的判定定理SAS证得△AEG≌△AEB,由全等三角形的对应角相等、对应边相等知EG=BE,∠B=∠AGE;然后由中点E的性质平行线的性质以及等腰三角形的判定与性质求得CF=FG;最后根据线段间的和差关系证得结论.
【详解】
在AF上截取AG=AB,连接EG,CG.
∵四边形ABCD是平行四边形,
∴AB∥CD,CD=AB=6,
∴∠DFA=∠BAF,
∵∠DFA=1∠BAE,
∴∠FAE=∠BAE,
在△BAE和△GAE中,
,
∴△BAE≌△GAE(SAS).
∴EG=BE,∠B=∠AGE;
又∵E为BC中点,
∴CE=BE.
∴EG=EC,
∴∠EGC=∠ECG;
∵AB∥CD,
∴∠B+∠BCD=180°.
又∵∠AGE+∠EGF=180°,∠AGE=∠B,
∴∠BCF=∠EGF;
又∵∠EGC=∠ECG,
∴∠FGC=∠FCG,
∴FG=FC;
∵DF=4.8,
∴CF=CD-DF=6-4.8=1.1,
又∵AG=AB,
∴AF=AG+GF=AB+FC=CD+FC=6+1.1=7.1.
故选C.
本题考查了平行四边形的性质、全等三角形的判定与性质.利用平行四边形的性质,可以证角相等、线段相等.其关键是根据所要证明的全等三角形,选择需要的边、角相等条件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6
【解析】
先证明△AOE≌△COF,Rt△BFO≌Rt△BFC,再证明△OBC、△BEF是等边三角形即可求出答案.
【详解】
如图,连接BO,
∵四边形ABCD是矩形,
∴DC∥AB,∠DCB=90°
∴∠FCO=∠EAO
在△AOE与△COF中,
∴△AOE≌△COF
∴OE=OF,OA=OC
∵BF=BE
∴BO⊥EF,∠BOF=90°
∵∠BEF=2∠BAC=∠CAB+∠AOE
∴∠EAO=∠EOA,
∴EA=EO=OF=FC=2
在Rt△BFO与Rt△BFC中
∴Rt△BFO≌Rt△BFC
∴BO=BC
在Rt△ABC中,∵AO=OC,
∴BO=AO=OC=BC
∴△BOC是等边三角形
∴∠BCO=60°,∠BAC=30°
∴∠FEB=2∠CAB=60°,
∵BE=BF
∴EB=EF=4
∴AB=AE+EB=2+4=6,
故答案为6.
本题考查的是全等三角形的性质与判定和等边三角形的判定与性质,能够充分调动所学知识是解题本题的关键.
10、()
【解析】
设出大树原来高度,用勾股定理建立方程求解即可.
【详解】
设这棵大树在折断之前的高度为x米,根据题意得:42+52=(x﹣4)2,∴x=4或x=40(舍),∴这棵大树在折断之前的高度为(4)米.
故答案为:().
本题是勾股定理的应用,解答本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.
11、1
【解析】
由题意直接根据频数=频率×总数,进而可得答案.
【详解】
解:由题意可得成绩在81~ 90这个分数段的同学有48×0.25=1(名).
故答案为:1.
本题主要考查频数和频率,解题的关键是掌握频率等于频数除以总数进行分析计算.
12、1
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
∵a1,∴a﹣1,∴(a﹣1)1=3,a1=1(a+1),∴a1﹣1a=1,∴原式=.
故答案为:1.
本题考查了二次根式,解题的关键是熟练运用二次根式的运算以及整式的运算,本题属于中等题型.
13、40°。
【解析】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.
点睛:本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.
【解析】
分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;
(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;
(3)根据题意和(2)中的结果,可以解答本题.
详解:(1)设A型空调和B型空调每台各需x元、y元,
,解得,,
答:A型空调和B型空调每台各需9000元、6000元;
(2)设购买A型空调a台,则购买B型空调(30-a)台,
,
解得,10≤a≤12,
∴a=10、11、12,共有三种采购方案,
方案一:采购A型空调10台,B型空调20台,
方案二:采购A型空调11台,B型空调19台,
方案三:采购A型空调12台,B型空调18台;
(3)设总费用为w元,
w=9000a+6000(30-a)=3000a+180000,
∴当a=10时,w取得最小值,此时w=210000,
即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.
点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.
15、至少购进玫瑰200枝.
【解析】
由康乃馨和玫瑰共500枝,可设玫瑰x枝,康乃馨(500-x)枝,可求出每种花的总进价,再利用两种花总进价和“不多于900元”列出不等式并解答.
【详解】
解:设购进玫瑰x枝,则购进康乃馨(500-x)枝,列不等式得:
1.5x+2(500-x)≤900
解得:x≥200
答:至少购进玫瑰200枝.
本题考查了一元一次不等式的应用,关键是找准不等关系列不等式,是常考题型.
16、(1)A、B两种型号电脑每台价格分别是0.1万元和0.4万元;(2)最多可购买A种型号电脑12台.
【解析】
(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.根据“用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同”列出方程,解方程即可求解;(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.根据 “用不多于9.2万元的资金购进这两种电脑20台”列出不等式,解不等式即可求解.
【详解】
(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.
根据题意得:,
解得:x=0.1.
经检验:x=0.1是原方程的解,x﹣0.1=0.4
答:A、B两种型号电脑每台价格分别是0.1万元和0.4万元.
(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.
根据题意得:0.1y+0.4(20﹣y)≤9.2.
解得:y≤12,
∴最多可购买A种型号电脑12台.
答:最多可购买A种型号电脑12台.
本题考查了分式方程的应用和一元一次不等式的应用.分析题意,找到合适的数量关系是解决问题的关键.
17、 (1)1
相关试卷
这是一份内蒙古通辽市科尔沁左翼中学旗县2025届数学九上开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份内蒙古通辽市开鲁2025届九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份内蒙古通辽市2025届数学九上开学复习检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。