年终活动
搜索
    上传资料 赚现金

    2024-2025学年浙江省绍兴市诸暨市数学九上开学联考试题【含答案】

    2024-2025学年浙江省绍兴市诸暨市数学九上开学联考试题【含答案】第1页
    2024-2025学年浙江省绍兴市诸暨市数学九上开学联考试题【含答案】第2页
    2024-2025学年浙江省绍兴市诸暨市数学九上开学联考试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年浙江省绍兴市诸暨市数学九上开学联考试题【含答案】

    展开

    这是一份2024-2025学年浙江省绍兴市诸暨市数学九上开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果=2﹣x,那么( )
    A.x<2B.x≤2C.x>2D.x≥2
    2、(4分)如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为
    A.1 B.2 C.3 D.4
    3、(4分)Rt△ABO与Rt△CBD在平面直角坐标系中的位置如图所示,∠ABO=∠CBD=90°,若点A(2,﹣2),∠CBA=60°,BO=BD,则点C的坐标是( )
    A.(2,2)B.(1,)C.(,1)D.(2,2)
    4、(4分)如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=,AC=2,BD=4,则AE的长为( )
    A.B.C.D.
    5、(4分)为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是( )
    A.220,220B.220,210C.200,220D.230,210
    6、(4分)如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,修路的方法有 ( )
    A.1种B.2种C.4种D.无数种
    7、(4分)矩形ABCD的对角线AC、BD交于点O,下列结论不成立的是( )
    A.AC=BDB.OA=OBC.OC=CDD.∠BCD=90°
    8、(4分)在一次数学测验中,一学习小组七人的成绩如表所示:
    则这七人成绩的中位数是( )
    A.22B.89C.92D.96
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为_____.
    10、(4分)小明五次测试成绩为:91、89、88、90、92,则五次测试成绩平均数为_____,方差为________.
    11、(4分)将反比例函数的图像绕着原点O顺时针旋转45°得到新的双曲线图像(如图1所示),直线轴,F为x轴上的一个定点,已知,图像上的任意一点P到F的距离与直线l的距离之比为定值,记为e,即.
    (1)如图1,若直线l经过点B(1,0),双曲线的解析式为,且,则F点的坐标为__________.
    (2)如图2,若直线l经过点B(1,0), 双曲线的解析式为,且,P为双曲线在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接HQ,在点P运动的过程中,当时,点P的坐标为__________.
    12、(4分)如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P、Q分别是BD、AB上的动点,则AP+PQ的最小值为______.
    13、(4分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.
    15、(8分)如图,直线y=x﹣3交x轴于A,交y轴于B,
    (1)求A,B的坐标和AB的长(直接写出答案);
    (2)点C是y轴上一点,若AC=BC,求点C的坐标;
    (3)点D是x轴上一点,∠BAO=2∠DBO,求点D的坐标.
    16、(8分)已知:如图,在□ABCD中,点M、N分别是AB、CD的中点.求证:DM = BN.
    17、(10分) “中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.
    根据以上信息回答下列问题:
    (1)本次共随机抽取了 名学生进行调查,听写正确的汉字个数x在 范围的人数最多;
    (2)补全频数分布直方图;
    (3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;
    (4)该校共有1350名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.
    18、(10分)如图,等腰直角三角形 AEF 的顶点 E 在等腰直角三角形 ABC 的边 BC上.AB 的延长线交 EF 于 D 点,其中∠AEF=∠ABC=90°.
    (1)求证:
    (2)若 E 为 BC 的中点,求的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.
    20、(4分)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则CE与EO之间的数量关系是_____.
    21、(4分)如图,已知AB⊥CD,垂足为点O,直线EF经过O点,若∠1=55°,则∠COE的度数为______度.
    22、(4分)若关于x的分式方程=有增根,则m的值为_____.
    23、(4分)每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,_____是常量,_____是变量.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上

    (1)在图(1)中,点P在小正方形的顶点上,作出点P关于直线AC的对称点Q
    (2)在图(2)中,画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上
    (3)在图(3)中,B是AC的中点,作线段AB的垂直平分线,要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹
    25、(10分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.
    (1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;
    (2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;
    (3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.
    26、(12分)为增强学生的身体素质,教育行政部门规定每位学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
    (1)在这次调查中共调查了多少名学生?
    (2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
    (3)户外活动时间的众数和中位数分别是多少?
    (4)若该市共有20000名学生,大约有多少学生户外活动的平均时间符合要求?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题分析:根据二次根式的性质,,可知x-2≤0,即x≤2.
    故选B
    考点:二次根式的性质
    2、C
    【解析】
    ①使得BE与AE重合,即可构成邻边不等的矩形,如图:
    ∵∠B=60°,
    ∴AC=BC,
    ∴CD≠BC.
    ②使得CD与AD重合,即可构成等腰梯形,如图:
    ③使得CD与DE重合,构成有两个角为锐角的是菱形,如图:
    故计划可拼出①②③.
    故选C.
    3、C
    【解析】
    过点C作CE垂直x轴于点E.先证明△ODB为等边三角形,求出OD、DB长,然后根据∠DCB=30°,求出CD的长,进而求出OC,最后求出OE,CE,即求出点C坐标.
    【详解】
    .解:如图,过点C作CE垂直x轴于点E.
    ∵A(2,﹣2),
    ∴OB=2,AB=2,
    ∵∠ABO=∠CBD=90°,
    ∴∠DBO=∠CBA=60°,
    ∵BO=BD,
    ∴∠D=DOB=60°,
    DO=DB=BO=2,
    ∴∠BCD=30°,
    CD=2BD=4,
    ∴CO=CD﹣OD=4﹣2=2,
    ∵∠COE=90°﹣∠COy=90°﹣60°=30°
    ∴CE=OC=1,OE=,
    ∴C(,1).
    故选C.
    本题考查坐标与图形性质,熟练运用30度角直角三角形性质是解题的关键.
    4、D
    【解析】
    由勾股定理的逆定理可判定△BAC是直角三角形,继而根据求出平行四边形ABCD的面积即可求解.
    【详解】
    解:∵AC=2,BD=4,四边形ABCD是平行四边形,
    ∴AO=AC=1,BO=BD=2,
    ∵AB=,
    ∴AB2+AO2=BO2,
    ∴∠BAC=90°,
    ∵在Rt△BAC中,BC=,
    S△BAC=×AB×AC=×BC×AE,
    ∴×2=AE,
    ∴AE=,
    故选:D.
    本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.
    5、A
    【解析】
    由题意知,200,210,210,210,220,220,220,220,230,230,230,故众数中位数都是220,
    故选A.
    6、D
    【解析】
    分析:根据正方形的性质,即可解答.
    详解:利用正方形的对称性,只要将十字架交点放在正方形的中心,转动任意角度,都能将正方形分成面积相等的四部分.
    故选:D.
    点睛:本题主要考查了正方形的性质,解题关键在于理解正方形的性质.
    7、C
    【解析】
    根据矩形的性质可以直接判断.
    【详解】
    ∵四边形ABCD是矩形
    ∴AC=BD,OA=OB=OC=OD,∠BCD=90°
    ∴选项A,B,D成立,
    故选C.
    本题考查了矩形的性质,熟练运用矩形的性质是本题的关键.
    8、D
    【解析】
    根据中位数的定义求解即可.
    【详解】
    ∵从小到大排列后,成绩排在第四位的是96分,
    ∴中位数是96.
    故选D.
    此题主要考查了中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3或-1
    【解析】
    据题意得,∵(x+2)*5=(x+2)2-52∴x2+4x-21=0,∴(x-3)(x+1)=0,∴x=3或x=-1.
    10、90 1
    【解析】
    解:平均数=,
    方差=
    故答案为:90;1.
    11、F(4,0)
    【解析】
    (1)令y=0求出x的值,结合e=2可得出点A的坐标,由点B的坐标及e=2可求出AF的长度,将其代入OF=OB+AB+AF中即可求出点F的坐标;
    (2)设点P的坐标为(x,),则点H的坐标为(1,),由Q为线段PF上靠近点P的三等分点,可得出点Q的坐标为(x+,),利用两点间的距离公式列方程解答即可;
    【详解】
    解:(1)如图:
    当y=0时,±,
    解得:x1=2,x2=-2(舍去),
    ∴点A的坐标为(2,0).
    ∵点B的坐标为(1,0),
    ∴AB=1.
    ∵e=2,
    ∴,
    ∴AF=2,
    ∴OF=OB+AB+AF=4,
    ∴F点的坐标为(4,0).
    故答案为:(4,0).
    (2)设点P的坐标为(x,),则点H的坐标为(1,).
    ∵点Q为线段PF上靠近点P的三等分点,点F的坐标为(5,0),
    ∴点Q的坐标为(x+,).
    ∵点H的坐标为(1,),HQ=HP,
    ∴(x+-1)2+(-)2=[(x-1)]2,
    化简得:15x2-48x+39=0,
    解得:x1=,x2=1(舍去),
    ∴点P的坐标为(,).
    故答案为:(,).
    本题考查了两点间的距离、解一元二次方程以及反比例函数的综合应用,解题的关键是:(1)利用特殊值法(点A和点P重合),求出点F的坐标;(2)设出点P的坐标,利用两点间的距离公式找出关于x的一元二次方程;
    12、2
    【解析】
    作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
    【详解】
    解:作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
    ∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,
    ∴P′Q′=P′H,
    ∴AP′+P′Q′=AP′+P′H=AH,
    根据垂线段最短可知,PA+PQ的最小值是线段AH的长,
    ∵AB=4,∠AHB=90°,∠ABH=45°,
    ∴AH=BH=2,
    故答案为:2.
    本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
    13、x>1
    【解析】
    试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.
    试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;
    由于两直线的交点横坐标为:x=1,
    观察图象可知,当x>1时,x+b>ax+3;
    考点:一次函数与一元一次不等式.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AD∥BC,且AD=BC,
    ∴AF∥EC,
    ∵BE=DF,
    ∴AF=EC,
    ∴四边形AECF是平行四边形,
    ∴AE=CF.
    本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.
    15、(1)点A为(4,0),点B为(0,-3),AB=5;(2)(0,);(3)点D坐标为(-1,0)或(1,0).
    【解析】
    (1)设x=0,y=0,可以求出A,B坐标;、
    (2)设OC=x,则BC=BO+OC=x+3,即AC=BC=x+3,由勾股定理得;
    (3),得,,.
    【详解】
    (1)点A为(4,0),点B为(0,-3),AB=5
    (2)设OC=x,则BC=BO+OC=x+3
    即AC=BC=x+3
    在Rt△AOC中,

    本题考核知识点:一次函数的应用. 解题关键点:此题比较综合,要注意掌握数形结合思想.
    16、见解析
    【解析】
    根据平行四边形的性质得到AB=CD,AD=BC,∠A=∠C.,利用点M、N分别是AB、CD的中点证得,再证明△ADM≌△CBN即可得到结论.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴ AB=CD,AD=BC,∠A=∠C.
    又∵点M、N分别是AB、CD的中点,


    ∴ △ADM≌△CBN(SAS)
    ∴ DM = BN.
    此题考查平行四边形的性质,全等三角形的判定与性质,线段中点的性质,根据题中的已知条件确定正确全等三角形的思路是解题的关键.
    17、(1)50,;(2)见解析(3)被调查学生听写正确的汉字个数的平均数是23个.(4)810人
    【解析】
    由统计图表可知:(1)抽取的学生总数是10÷1%,听写正确的汉字个数21≤x<31范围内的人数最多;(2)先求出11≤x<21一组的人数和21≤x<31一组的人数,再画统计图;(3)根据: ;(4)良好学生数:
    【详解】
    (1)抽取的学生总数是10÷1%=50(人),听写正确的汉字个数21≤x<31范围内的人数最多,
    故答案是:50,21≤x<31;
    (2)11≤x<21一组的人数是:50×30%=15(人),
    21≤x<31一组的人数是:50﹣5﹣15﹣10=1.

    (3)=23(个).
    答:被调查学生听写正确的汉字个数的平均数是23个.
    (4)=810(人).
    答:估计该校本次“汉字听写”比赛达到良好的学生人数约为810人.
    本题考核知识点:统计初步. 解题关键点:从统计图表获取信息,用样本估计总体.
    18、(1)见解析;(2)
    【解析】
    (1)由△AEF、△ABC是等腰直角三角形,易证得△FAD∽△CAE,然后由相似三角形的对应边成比例,可得 ,又由等腰直角三角形的性质,可得AF= AE,即可证得;
    (2)首先设BE=a,由射影定理,可求得DB的长,继而可求得DA的长,即可求得答案.
    【详解】
    (1)证明:∵△AEF、△ABC是等腰直角三角形,
    ∴∠EAF=∠BAC=45°,∠F=∠C=45°,
    ∴∠FAD=∠CAE,
    ∴△FAD∽△CAE,
    ∴,
    ∵∠AEF=90°,AE=EF,
    ∴AF=AE,
    ∴;
    (2)设BE=a,
    ∵E为BC的中点,
    ∴EC=BE=a,AB=BC=2a,
    ∵∠AEF=∠ABC=90°,
    ∴BE =AB⋅DB,
    ∴DB= ,
    ∵DA=DB+AB,
    ∴DA= ,
    ∴= .
    此题考查相似三角形的判定与性质,等腰直角三角形,解题关键在于证明△FAD∽△CAE
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    试题分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,AC=12,根据勾股定理可求得OB的长,继而求得答案.
    解:∵四边形ABCD是平行四边形,AC=12,
    ∴OA=AC=6,BD=2OB,
    ∵AB⊥AC,AB=8,
    ∴OB===10,
    ∴BD=2OB=1.
    故答案为:1.
    20、CE=3EO
    【解析】
    根据三角形的中位线得出DE=BC,DE∥BC,根据相似三角形的判定得出△DOE∽△BOC,根据相似三角形的性质求出CO=2EO即可.
    【详解】
    .解:CE=3EO,
    理由是:连接DE,
    ∵在△ABC中,BD,CE分别是边AC,AB上的中线,
    ∴DE=BC,DE∥BC,
    ∴△DOE∽△BOC,
    ∴ =,
    ∴CO=2EO,
    ∴CE=3EO,
    故答案为:CE=3EO.
    .本题考查了三角形的中位线定理和相似三角形的性质和判定,能求出DE=BC和△DOE∽△BOC是解此题的关键.
    21、1
    【解析】
    根据邻补角的和是180°,结合已知条件可求∠COE的度数.
    【详解】
    ∵∠1=55°,
    ∴∠COE=180°-55°=1°.
    故答案为1.
    此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.
    22、3
    【解析】
    增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m的值.
    【详解】
    解:去分母得:3x=m+3,
    由分式方程有增根,得到x﹣2=0,即x=2,
    把x=2代入方程得:6=m+3,
    解得:m=3,
    故答案为:3
    此题考查分式方程的增根,解题关键在于得到x的值.
    23、电影票的售价 电影票的张数,票房收入.
    【解析】
    根据常量,变量的定义进行填空即可.
    【详解】
    解:常量是电影票的售价,变量是电影票的张数,票房收入,
    故答案为:电影票的售价;电影票的张数,票房收入.
    本题考查了常量和变量,掌握常量和变量的定义是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析;(3)见解析
    【解析】
    (1)利用数形结合的思想解决问题即可.
    (2)构造边长分别为,的矩形即可.
    (3)取格点M,N,作直线MN交AC于E,取格点F,作直线EF,直线EF 即为所求.
    【详解】
    解:
    (1)如图1所示.Q为所求
    (2)如图2所示,矩形ABCD为所求
    (3)取格点M,N,作直线MN交AC于E,取格点F,作直线EF,直线EF即为所求
    本题主要考查了线段垂直平分线的性质,矩形的判定与性质,作图-轴对称变换,掌握线段垂直平分线的性质,矩形的判定与性质,作图-轴对称变换是解题的关键.
    25、(1)y1=36x;(2)当0≤x≤10时,y2=42x,当x>10时,y2=33.6x+84;(3)若购买35个书包,选A,B品牌都一样,若购买35个以上书包,选B品牌划算,若购买书包个数超过10个但小于35个,选A品牌划算
    【解析】
    (1)直接利用购买A品牌书包按原价的九折销售,进而得出函数关系式;
    (2)分别利用当0≤x≤10时,当x>10时,分别得出函数关系式;
    (3)分别利用①当y1=y2时,②当y1>y2时,③当y1<y2时,求出答案.
    【详解】
    解:(1)由题意可得:y1=36x;
    (2)当0≤x≤10时,y2=42x;
    当x>10时,y2=42×10+42×0.8(x-10)=33.6x+84;
    (3)若x>10,则y2=33.6x+84,
    ①当y1=y2时,36x=33.6x+84,
    解得:x=35;
    ②当y1>y2时,36x>33.6x+84,
    解得:x>35;
    ③当y1<y2时,36x<33.6x+84,
    解得:x<35;
    ∵x>10,
    ∴10<x<35,
    答:若购买35个书包,选A,B品牌都一样;若购买35个以上书包,选B品牌划算;
    若购买书包个数超过10个但小于35个,选A品牌划算.
    此题主要考查了一次函数的应用,正确得出函数关系式进而分类讨论是解题关键.
    26、 (1)50;(2)12;(3)中数是1小时,中位数是1小时;(4)16000人.
    【解析】
    试题分析:(1)根据户外活动时间是0.5小时的有10人,所占的百分比是20%,据此即可求得调查的总人数;
    (2)用总人数乘以对应的百分比即可求得人数,从而补全直方图;
    (3)根据众数、中位数的定义即可求解;
    (4)利用总人数乘以对应的比分比即可求解.
    试题解析:(1)调查的总人数是10÷20%=50(人);
    (2)户外活动时间是1.5小时的人数是50×24%=12(人),

    (3)中数是1小时,中位数是1小时;
    (4)学生户外活动的平均时间符合要求的人数是20000×(1-20%)=16000(人).
    答:大约有16000学生户外活动的平均时间符合要求.
    考点:1.频数(率)分布直方图;2.扇形统计图;3.加权平均数;4.中位数;5.众数.
    题号





    总分
    得分
    成绩(分)
    78
    89
    96
    100
    人数
    1
    2
    3
    1
    听写正确的汉字个数x
    组中值
    1≤x<11
    6
    11≤x<21
    16
    21≤x<31
    26
    31≤x<41
    36

    相关试卷

    2024-2025学年浙江省江北区九上数学开学考试试题【含答案】:

    这是一份2024-2025学年浙江省江北区九上数学开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】:

    这是一份2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省聊城莘县联考九上数学开学调研试题【含答案】:

    这是一份2024-2025学年山东省聊城莘县联考九上数学开学调研试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map